Czasopismo
2010
|
Vol. 40, nr 2
|
195-202
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose of this paper is to develop mathematical models of the treatment methods using loose solid balls. Analysis of treatment with the use of loose solid balls behaviour is carried out for modelling. The operating factors such as geometrical parameters of a nozzle, distance to the treated surface, and pressure of compressed air and outlet factors such as level of strengthening, depth of hardened layer are determined. It is proposed to put into basis of the mathematical models the energy conception that permit for unification and simplification of mathematical description of the processes. The level of strengthening, and depth of hardened layer are estimated for the plain surfaces by means of created mathematical models. Design/methodology/approach: The main methods used for the theoretical research are mathematical modelling, integral calculus, fundamentals of analytic geometry, theory of probability, hydraulics of multiphase flow. The main methods used for the experimental investigations were conducted by receiving diagrams of surface roughness, microhardness of the oblique slices of the treated samples, speckle interferograms of the surfaces treated using loose solid balls. Findings: A method of mathematical modelling for treatment with the use of loose solid balls is developed based on the energy conception. The mathematical model is created and allows calculating the characteristics of surface quality depending on the technological modes of treatment. Research limitations/implications: It is planned to develop and improve the methods of mathematical modelling of the treatment using loose solid balls in future research by extending them for the curvilinear treated surfaces, which are characterised by a movement relative to the nozzle. Practical implications: have the applied software, elaborated on the basis of the models, that allows providing for automation of calculations of the characteristics of surface quality depending on the technological modes of the treatment. Originality/value: It is pioneered to receive functional dependences between depth of a hardening layer, changing microhardness, degree of hardening and the parameters of equipment, blast of loose solid balls, and working medium. The created functional dependences take the distribution of characteristics of working medium into account (mass and velocity) all along the cross-sections of the blast.
Rocznik
Tom
Strony
195-202
Opis fizyczny
Bibliogr. 16 poz., rys., tabl.
Twórcy
autor
autor
- Department of Electronic Machine building, Lviv National University, Bandery str. 12, Lviv, 79013, Ukraine, stotsko@polynet.lviv.ua
Bibliografia
- [1] M. M. Devkin, N. D. Sevastyanov, Ochistka poverhnostey detaley metallicheskim peskom, M.: Mashgiz, 1963, 89 (in Russian).
- [2] V. V. Petrosov, Gidrodrobestruynoye uprochneniye detaley i instrumenta, M.: Mashinostroenie, 1977, 166 (in Russian).
- [3] Poverhnostnoe uprochnenie detaley mashin i instrumentov, Kuibyshev, KPTI, 1985, 137 (in Russian).
- [4] B. P. Rykovskiy, V. A. Smirnov, G. M. Shchetinin, Mestnoye uprochnenie detaley poverhnostnym naklepom, M.: Mashinostroenie, 1985, 152 (in Russian).
- [5] Sh.M. Bilik, Abrazivno-zhidkostnaya obrabotka metallov, M.: Mashgiz, 1960, 196 (in Russian).
- [6] A. E. Provolotskiy, Struyno-abrazivnaya obrabotka detaley mashin, K.: Tehnika, 1989, 177 (in Russian).
- [7] O. F. Salenko, V. B. Strutynskiy, M. V. Zagirnyak, Efektyvne gidrorizannya, Monografiya - Kremenchuk, KDPU, 2005, 488 (in Ukrainian).
- [8] A. F. Salenko, V. B. Strutynskiy, P. V. Pozdnyakov, Gidrostruynye tehnologii pri remonte magistralnyh truboprovodov, Oborudovanie i instrumenty 12 (2004) 34-39 (in Russian).
- [9] O. F. Salenko, P. B. Pozdnyakov, T. O. Stefanovych Instrument integralnoyi diyi dlya vykonannya strumynno-abrazyvnogo ochyshchennya, Visnyk Natsionalnogo universytetu (Lvivska Politehnika), Optymizatsiya vyrobnychyh protsesiv i tehnichnyy kontrol u mashynobuduvanni ta pryladobuduvanni 613 (2008) 46-55 (in Ukrainian).
- [10] Impact Surface Treatment, London and New York, 1986, 326.
- [11] T. H. Chuang, Erosion of SS41 steel by sand blasting, Metallurgical and Materials Transactions 30A/4 (1999) 941.
- [12] J. Luo, P. Bowen, Effects of Temperature and Shot Peening on S-N Behaviour of a PM Ni-Base Superalloy UDIMET 720, Metallurgical and Materials Transactions A 35/1 (2004) 1007-1016.
- [13] A. B. Tsyganovskiy, Opredelenie ratsionalnyh geometricheskih harakteristik struynyh apparatov dlya gidroabrazivnoy obrabotki zatoplenymi struyami, Novi materialy i tehnologiyi v metalurgiyi ta mashynobuduvanni 2 (2005) 71-73 (in Russian).
- [14] Z. A. Stotsko, T. O. Stefanovych, Energetycha kontsepsiya protsesu strumenevoyi obrobky poverhon nezvyazanymy tverdymy tilamy, Ukrayinskiy mizhvidomchyy naukovo-tehnichnyy zbirnyk: Avtomatyzatsiya vyrobnychyh protsesiv u mashynobuduvanni ta pryladobuduvanni 39 (2005) 99-104 (in Ukrainian).
- [15] V. V. Savytskyy, Vyznachennya zalyshkovyh napruzhen’ metodom elektronnoyi spekl-interferometriyi, Avtoreferat na zdobuttya naukovogo stupenya kandydata tehnichnyh nauk, Kyiv, POD IEZ im. Ye.O. Patona NAN Ukrayiny, 2007, 20 (in Ukrainian).
- [16] T. Gartska, The influence of product thickness on the measurement by Barkhausen Noise Method, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 47-50.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0074