Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 37, nr 2 | 644-651
Tytuł artykułu

Robotized PTA surfacing of nanomaterial layers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this research was to investigate the influence of heat input in robotized surfacing on quality and properties of nanomaterial layers. Design/methodology/approach: quality of single and multilayer, stringer and weave beads was assessed by abrasion resistance tests according to ASTMG65 standard, erosion resistance tests according to G76 standard, metallographic examinations and hardness tests. Findings: due to the fact that the robotized surfacing stand was used, the analysis of properties of the deposits was performed for single and multilayer, stringer and weave beads. Research limitations/implications: for complete information about tested deposits it is needed to compare deposits properties PTA surfaced with other technologies of nanomaterial layers manufacturing products. Practical implications: Results of this paper is an optimal range of parameters of surfacing of single and multilayer, stringer and weave beads of nanomaterial layers. Originality: tests, abrasion and erosion resistance tests) were provided for surfacing of single and multilayer, stringer and weave beads, and the results were compared. The influence of heat input on layers properties and theirs structure was defined.
Wydawca

Rocznik
Strony
644-651
Opis fizyczny
Bibliogr. 21 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
  • Welding Department, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland Gliwice, Poland, tomasz.kik@polsl.pl
Bibliografia
  • [1] M. Wysiecki, Modern tool materials. WNT, Warsaw, 1997, (in Polish).
  • [2] A. Klimpel, L. A. Dobrzański, D. Janicki, A. Lisiecki, Abrasion resistance of GMA metal cored wires surfaced deposits, COMMENT. 13th AMME, Wisła, 2005, 311-314.
  • [3] K. J. A. Brookes, World Directory and Handbook of Hardmetals and Hard Materials, East Barnet, International Carbide Data, 6, 1996.
  • [4] Koji Kato Koshi Adachi, Wear of advanced ceramics, Wear, 253/11-12 (2002) 1097-1104.
  • [5] M. Darabara, G. D. Papadimitriou, L. Bourithis, Synthesis of TiB2 metal matrix composite on plain steel substrate: microstructure and wear properties, Materials Science and Technology 237 (2007) 839-846.
  • [6] G. Ramana, G. Reddy, L. Antony, Abi/Inform Trade and industry, 2003.
  • [7] J. N. DuPont, On Optimization of the Powder Plasma Arc Surfacing Process, Metallurgical and Materials Transactions 31A (2000) 1805-1817.
  • [8] D. Zhong, B. Mishra, J. J. Moore, A. Madan, Effect of pulsed plasma processing on controlling nanostructure and properties of thin film/coatings, Surface Engineering 20/3 (2004) 196-204.
  • [9] E. B. Macak, W. Munz, J. M. Rodenburg, Edge related effects during ion assisted Pvd on sharp edges and implications for coating of cutting tools, Surface Engineering 19/4 (2003) 310-314.
  • [10] E. M. Oks, Generation of multiply charged ions in vacuum arc plasmas, I/ IEEE Transaction on Plasma Science 30/1 (2002) 202-207.
  • [11] N. Hey, Nanorevolution, special report nanotechnology, 2003.
  • [12] B. Schwebber, Living in the material world, EDN, 2004.
  • [13] J. Alastair, T. Walling Satya, Nanotech Regulation mercarus reports, 2006.
  • [14] L.Qian, J. P. Hinestroza, Application of Nanotechnology for high performance textiles, Journal of Textile and Apparel, Technology and Management 4/1 (2004) 1-7.
  • [15] A. Rae, Nanomaterials Promise Innovative Solutions, Advanced packaging, 2005.
  • [16] P. Gibson, The Wonders and Dangers of Nanotechnology, Safety Compliance letter, 2007.
  • [17] X. Chen, S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chemical Review 107/7 (2007) 2891-2959.
  • [18] P. Tucker, Nanotech: Big Risks, Big Opportunities, The futurist, 2007, 8-9.
  • [19] A. Klimpel, Robotized GMA surfacing of cermetal deposits, Journal of AMME 18/1-2 (2006) 395-398.
  • [20] A. Klimpel, L. A. Dobrzański, D. Janicki, A. Lisiecki, Abrasion resistance of GMA metal cored wires surfaced deposits, Proceedings of the 13th Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME’2005, Gliwice - Wisła, 2005, 311-314.
  • [21] A. Klimpel, T. Kik, Erosion and abrasion wear resistance of GMA wire surfaced nanostructural deposits, Archives of. Materials Science Engineering 30/2 (2008) 121-124.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.