Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 37, nr 2 | 571-577
Tytuł artykułu

Optimization of surface roughness parameters in dry turning

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The precision of machine tools on one hand and the input setup parameters on the other hand, are strongly influenced in main output machining parameters such as stock removal, toll wear ratio and surface roughnes. Design/methodology/approach: There are a lot of input parameters which are effective in the variations of these output parameters. In CNC machines, the optimization of machining process in order to predict surface roughness is very important. Findings: From this point of view, the combination of adaptive neural fuzzy intelligent system is used to predict the roughness of dried surface machined in turning process. Research limitations/implications: There are some limitations in the properties of various kinds of lubricants. The influence of some undesirable factors in experiments is Another limitation in this research. Practical implications: From this point of view, some samples are machined with various input parameters and then the experimental data is used to create fuzzy rules and their processing via neural networks. So that, the prediction model is created with some experimental data first. Then the results of this model are compared with the real surface roughness. Originality/value: When the cutting speed is increased the machined surface quality is improved.The quality of machined surface is decreased with the feeding rates and the depth of cut.The error of the model is more less than the error of using ordinary equations. The comparison results show that this model is more effective than theoretical calculation methods.
Wydawca

Rocznik
Strony
571-577
Opis fizyczny
Bibliogr. 22 poz., rys., tabl.
Twórcy
  • School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran, mahdavin@ut.ac.ir
Bibliografia
  • [1] T. Dzitkowski, A. Dymarek, Design and examin sensitivity of machine driving systems with require frequency spectrum, Journal of Achievements in Materials and Manufacturing Engineering 26/1 (2008) 49-56.
  • [2] K. A. Abou, E. I. Hossein and Z. Yahya, AISI304 Stainless Steel using new geometricall developed carbide inserts, Proceedings of the 13th International Scientific Conference on Achievements in Mechanical and Materials Engineering, 2005, Gliwice-Wisła, 41-44.
  • [3] V. Niola, G. Nasti and G. Qaremba, A problem of emphasizing features of a surface roughness by means the discrete wavelet transform, Proceedings of the 13th International Scientific Conference on Achievements in Mechanical and Materials Engineering, 2005, Gliwice- Wisła, 77-90.
  • [4] F. Cus and U. Zuperl, Particle Swarm intelligence based optimization of high speed end-milling, Archives of Computational Materials Science and Surface Engineering 1/3 (2009) 148-154.
  • [5] A. Buchacz, Dynamical flexibility of torsionally vibrating mechatronic system, Journal of Achievements in Materials and Manufacturing Engineering 26/1 (2008) 33-40.
  • [6] F. Cus, J. Balic, U. Zuperl, Hybrid ANFIS ants system based on optimization of turning parameters, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 79-86.
  • [7] N. R. Abburi, U. S. Dixit, A knowledge-based system for the prediction of the surface roughness in turning process, Robotics and Computer Integrated Manufacturing 25 (2005) 340-349.
  • [8] Y. H. Tsai, J. C. Chen, S. J. Lou, An in-process surface recognition system based on neural networks in end milling cutting operations, International Journal of Machine Tools and Manufacture 39 (1999) 583-605.
  • [9] S. J. Lou, J. C. Chen, In-process surface recognition of a CNC milling machine using the fuzzy nets method, Computers in Industrial Engineering 33 (1997) 401-404.
  • [10] J. C. Chen, M. Savage, Fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations, International Journal of Advanced Manufa-cturing Technology 17 (2001) 670-676.
  • [11] C.-C. A. Chen, W.-C. Liu, N. A. Duffie, A surface topography model for automated surface finishing, International Journal of Machine Tools and Manufacture 38 (1998) 543-550.
  • [12] B. H. Kim, C. N. Chu, Texture prediction of milled surfaces using texture superposition method, Computer Aided Design 31 (1999) 485-494.
  • [13] K. Y. Lee, M. C. Kang ,Y. H. Jeong, D. W. Lee, J. S. Kim, Simulation of the surface roughness and profile in high speed end milling, Journal of Materials Processing Technology 113 (2001) 410-415.
  • [14] O. B. Abuelatta, J. Madl, Surface roughness prediction based on cutting parameters and tool vibrations in turning operations, Journal of Materials Processing Technology 118 (2001) 269-277.
  • [15] C. Beggan, M. Woulfe, P. Young, G. Byrne, using acoustic emission to surface quality, International Journal of Machine Tools and Manufacture 15 (1999) 737-742.
  • [16] J. Kopac, M. Bahor, Interaction of the technological history of a workpiece material and machining parameter on the desired quality of the surface roughness of a product, Journal of Materials Processing Technology 92-93 (1999) 381-387.
  • [17] I. A. Choudhury, M. A. EL-Baradie, surface roughness in the turning of high-strength steel by factorial design of experiments, Journal of Materials Processing Technology 67 (1997) 55-61.
  • [18] X. P. Li, K. Iynkaran, A. Y. C. Nee, A hybrid machining simulator based on predictive theory and neural network modeling, Journal of Materials Processing Technology, 89- 90 (2003) 224-230.
  • [19] P. V. S. Suresh, P. Venkateswara, S. G. Deshmukh, A genetic algorithmic approach for optimization of surface roughness prediction model, International Journal of Machine Tools and Manufacture 42 (2002) 675-680.
  • [20] P. G. Baruados, G.-C. Vasniakos, predicting surface roughness in machining: a review, Machine Tools and Manufacture 40 (2002) 213-220.
  • [21] Yue Jiao, Shuting Lei, I. J. Pei, E. S. Lee, Fuzzy adaptive networks in machining process modeling: Surface roughness prediction for turning operations, Machine Tools and Manufacture 41 (2004) 183-191.
  • [22] M. Thomas, Y.Beauchamp, A.Y. Yousef, J. Masounave, Effect of tool vibrations on surface roughness during lathe dry turning process, Computer in Industrial Engineering, 31 (1996) 637- 644.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.