Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 37, nr 2 | 458-465
Tytuł artykułu

The mechanical characteristics of phosphate glasses under high temperature and friction-induced cross-linking processes

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperature-induced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young’s modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young’s modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young’s modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000şC enhancing mechanical properties by factor of 3 (see Fig. 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by sol-gel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Wydawca

Rocznik
Strony
458-465
Opis fizyczny
Bibliogr. 59 poz., rys., tabl.
Twórcy
autor
autor
  • Queensland University of Technology, School of Engineering Systems, GPO Box 2434 Brisbane, Q 4001, Australia, zpawlak@xmission.com
Bibliografia
  • [1] M. Karabulut, E. Melnik, R. Stefan, G. K. Marasinghe, C. S. Ray, C. R. Kurkjian, D. E. Day, Mechanism and structural properties of phosphate glasses, Journal of Non- Crystalline Solids 288 (2001) 8-17.
  • [2] R. K. Brow, Review: the structure of simple phosphate glasses, Journal of Non-Crystalline Solids 263-264 (2000) 1-28.
  • [3] B. C. Sales, L. A. Boatner, Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste, Science 226 (1984) 45-48.
  • [4] D. E. Day, Z. Wu, C. S. M. Ray, P. Hrma, Chemically durable iron phosphate glass waste forms,Journal of Non-Crystalline Solids241 (1998) 1-12.
  • [5] C. R. Kurkjian, Mechanical properties of phosphate glasses, Journal of Non-Crystalline Solids 263-264 (2000) 207-212.
  • [6] S. W. Martin, Review of the structures of phosphate glasses, European Journal of Solid State and Inorganic Chemistry, 28 (1991) 164-205.
  • [7] U. Hoppe, A structural model for phosphate glasses,Journal of Non-Crystalline Solids 195 (1966) 138-147.
  • [8] U. Hoppe, R. Kranold, D. Stachel, A. Barz, A.C. Hannon, A neutron and X-ray diffraction study of the structure of the La3P3O9, Journal of Non-Crystalline Solids 232-234 (1998) 44-51.
  • [9] G. K. Marasinghe, M. Karabulut, C. S. Ray, D. E. Day, M. G .Shumsky, W.B . Yelon, C. H. Booth, P. G. Allen, D. K. Shuh, Structural features of iron phosphate glasses, Journal of Non-Crystalline Solids 222 (1997) 144-152.
  • [10] M. Ijjaali, G. Venturini, R. Gerardin, B. Malaman, C. Gleitzer, Synthesis, structure and physical properties of a mixed-valence iron diphosphate Fe3(P2O7)2: first example of trigonal prismatic iron(2+) with oxo ligands, European Journal of Solid State and Inorganic Chemistry 28 (1991) 983-998.
  • [11] T. Jermoumi, S. Hassan, M. Hafied, Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons, Vibrational Spectroscopy 32 (2003) 207-213.
  • [12] S. T. Reis, M. Karabulut, D. E. Day, Chemical durability and structure of zinc–iron phosphate glasses, Journal of Non-Crystalline Solids 292 (2001) 150-157.
  • [13] R. K. Brow, D. R. Tallant, S. T. Myers, C. C. Phifer,The short-range structure of zinc polyphosphate glass, Journal of Non-Crystalline Solids191 (1995) 45-55.
  • [14] G. E. Brown, K. D. Keefer, P. M. Fenn, Extended x-ray absorption fine structure (EXAFS) study of iron-bearing silicate glasses: iron coordination environment and oxidation state, Abstracts of the Geological Society of America 10 (1978) 373.
  • [15] A. Behrens, H. Schafstall, 2D and 3D simulation of complex multistage forging processes by use of adaptive friction coefficient, Journal of Materials Processing Technology 80-81 (1998) 298-303.
  • [16] Y. C. Lin, S. W. Wang, T. M. Chen,A study on the wear behavior of hardened medium carbon steel, Journal of Materials Processing Technology 120 (2002) 126-132.
  • [17] A. Olefinjana, T. Tesfamichael, J. M. Bell, Chemical modification and the attending surface hardness of low alloy steel through medium energy nitrogen ion implantation, Journal of Materials Processing Technology 164-165 (2005) 905-910.
  • [18] P. A. Willermet, D. P. Dailey, R. O. Carter III, P. J. Schmitz, W. Zhu, Mechanism of formation of antiwear films from zinc dialkyldithiophosphates, Tribology International 28/3 (1995) 177-187.
  • [19] P. A. Willermet, R. O. Carter III, P. J. Schmitz, M. Everson, D. J. Scholl, W. H. Weber, Formation, structure, and properties of lubricants-derived antiwear films, Lubrication Science 9 (1997) 325-348.
  • [20] J. M. Martin, C. Grossiord, T. Le Mogne, J. Igarashi, Role of nitrogen in tribochemical interaction between Zndtp and succinimide in boundary lubrication, Tribology International 33 (2000) 453-459.
  • [21] J. M. Martin, Antiwear mechanism of zinc dithiophosphate: a chemical hardness approach, Tribology Letters 6 (1999) 1-8.
  • [22] S. Corezzi, D, Fioretto, R. Casalini, P. A. Rolla, Glass transition of an epoxy resin induced by temperature, pressure and chemical conversion: a rationale based on configurational entropy,Journal of Non-Crystalline Solids 307-310 (2002) 281-287.
  • [23] M. Aktary, M. T. DcDermott, G. A. McAlpine, Morphology and nano-mechanical properties of ZDDP antiwear films as a function of tribological contact time, Tribology Letters 12 (2002) 155-161.
  • [24] M. J. Matthewson, C. R. Kurkjian and S.T. Gulati, Strength measurements of optical fibers by bending, Journal of the American Ceramic Society 69 (1986) 815-821.
  • [25] T. Klug, R. Bruckner, Preparation of C-fibre borosilicate composities: influence of the fibre on mechanical properties, Journal of Matierals Science 29 (1994) 4013-4021.
  • [26] E. C. Onyiriuka, Zinc phosphate glass surfaces studied by XPS, Journal of Non-Crystalline Solids 163 (1993) 268-273.
  • [27] Z. Pawlak, Tribochemistry of Lubricating Oils, Elsevier, Amsterdam, 2003.
  • [28] M. A. Nicholls, T. Do, P. R. Norton, M. Kasrai, G. M. Bancroft, Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates, Tribology International 38 (2005) 15-39.
  • [29] M. Belin, J. M. Martin, J. L. Mansot, Friction–induced amorphization with ZDDP, Tribology Transactions 32 (1989) 410-413.
  • [30] N. J. Mosey, M. H. Muser, T. K. Wo, Molecular mechanism for the functionality of lubricant additives, Science 307 (2005) 1612-1615.
  • [31] K. L. Johnson, Contact Mechanics, Cambridge University, New York, 1985.
  • [32] J. Tuma, Handbook of Physical Calculations, McGraw-Hill, New York, 1983.
  • [33] O. L. Warren, J. F. Graham, P. R. Norton, J. E. Houston, T. A. Michalske, Nanomechanical properties of films derived from zinc dialkyldithiophosphate, Tribology Letters 4 (1998) 189-198.
  • [34] J. F. Graham, C, McCaugue, P. R. Norton, Evaluation of local mechanical properties in depth in MoDTC/ZDDP and ZDDP tribochemical reacted films by using nanoindentation, Tribology Letters 4 (1999) 149-157.
  • [35] K. Kubo, M. Kibukawa, Y. Skimakawa, The effect on friction of lubricants containing zinc dithiophosphate and organomolybdenum compoud, Proceedings of the IMechE: Part C - Journal of Mechanical Engineering Science C68/85 (1985) 121-131.
  • [36] Z. Pawlak, P. K. D. V. Yarlagadda, D. Hargreaves, V. Kosse, R. Frost, T. Rauckyte, S. Zak, Mechanism of hardening for the surface phosphates under external high pressure, Proceedings of the 11th International Scientific Conference “Contemporary Achievements in Mechanics, Manufacturing and Materials Science” CAM3S, Gliwice - Zakopane, 2005, 788-792.
  • [37] M. Kasrai, J. N. Cutler, K. Gore, G. M. Bancroft, K. H. Tan, The chemistry of antiwear films generated by the combination of ZDDP and MoDTC examined by X-ray absorption spectroscopy, Tribology Transactions 41 (1998) 69-77.
  • [38] J. M. Martin, C. Grossiord, Th. Le Mongne, J. Igarashi, Transfer films and friction under boundary lubrication, Wear 245 (2000) 107-115.
  • [39] J. Ye, M. Kano, Y. Yasuda, Evaluation of local mechanical properties in depth in MoDTC/ZDDP and ZDDP tribochemical reacted films using nanoindentation, Tribology Letters 13 (2002) 41-47.
  • [40] J. M. Martin, C. Grossiord, T. L. Mogne, S. Bec, A. Toneck, The two-layer structure of Zndtp tribofilms Part I: AES, XPS and XANES analyses, Tribology International 34 (2001) 523-530.
  • [41] M. A. Nicholls, P. R. Norton, G. M. Bancroft, K. Fyfe, M. Kasrai, X-ray absorption spectroscopy of tribofilms produced from zinc dialkyl dithiophosphates on Al–Si alloys, Wear 257 (2004) 311-328.
  • [42] M. M. Robersts, J. R. Wienhoff, K. Grant, D. J. Lacks, Structural transformations in silica glass under high pressure, Journal of Non-Crystalline Solids 281 (2001) 205-212.
  • [43] M. A. Nicholls, P. R. Norton, G. M. Bancroft, M. Kasrai, G. De Stasio, L. M. Wiese, Spatially resolved nanoscale chemical and mechanical characterization of ZDDP antiwear films on aluminum–silicon alloys under cylinder/bore wear conditions, Tribology Letters 18 (2005) 261-278.
  • [44] M. A. Nicholls, T. Do, P. R. Norton, G. M. Bancroft, M. Kasrai, T. W. Capehart, T. T. Cheng, T. Perry, Chemical and mechanical properties of ZDDP antiwear films on steel and thermal spray coatings studied by XANES spectroscopy and nanoindentation techniques, Tribology Letters 15 (2003) 241-248.
  • [45] M. A. Nicholls, P. R. Norton, G. M. Bancroft, M. Kasrai, T. Do, B. H. Frazer, G. DeStasio, Nanometer scale chemomechanical characterization of antiwear films, Tribology Letters 15 (2003) 205-216.
  • [46] S. Bec, A. Tonck, J. M. Georges, R. C. Coy, J. C. Bell, G. W. Roper, Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films, Proceedings of the Royal Society of London A 455 (1999) 4181-4203.
  • [47] A. Molina, Isolation and chemical characterization of a zinc dialkyldithiophosphate-derived antiwear agent, Tribology Transactions 30/4 (1987) 479-485.
  • [48] J. P. Bricout, P. Hivart, J. Oudin, Y. Ravalard, New testing procedure of zinc phosphate coatings involved in cold forging of cylindrical steel billets, J. Mater. Process. Technol., 24 (1990) 3-12.
  • [49] C. Wierre, J. D. Guerin, J. Oudin and J. P. Bricout, Finite-element analysis of the initial stage of the indentation-rotation test for phosphate and stearate coatings, Journal of Materials Processing Technology 41 (1994) 171-185.
  • [50] H. H. Tsai, H. Hocheng, Prediction of a thermally induced concave ground surface of the workpiece in surface grinding, Journal of Materials Processing Technology 122 (2002) 148-159.
  • [51] W. M. Lima, F. J. Velasco, J. Abenojar, J. M. Torralba, Numerical approach for estimating the elastic modulus in MMCs asa function of sintering temperature, Journal of Materials Processing Technology 143-144 (2003) 698-702.
  • [52] J. G. Lenard, The effect of lubricant additives on the coefficient of friction in cold rolling, Journal of Materials Processing Technology 80-81 (1998) 232-238.
  • [53] B. Hum, H. W. Colquhoun, J. G. Lenard, Measurements of friction during hot rolling of aluminum stripes, Journal of Materials Processing Technology 60 (1996) 331-338.
  • [54] L. Lazzaroto, L. Dubar, A. Dubois, P. Revassard, J. Oudin, Three selection criteria for the cold metal forming lubricating oils containing extreme pressure agents, Journal of Materials Processing Technology 80-81 (1998) 245-250.
  • [55] J. Monaghan, M. O’Reilly, The influence of lubrication on the surface finish of cold forged components, Journal of Materials Processing Technology 56 (1996) 678-690.
  • [56] D.-H. Jang, T.-K. Ryou, D.-Y. Yoon, B.-B. Hwang, The process sequence design of a power-assisted steering part, Journal of Materials Processing Technology 113 (2001) 87-92.
  • [57] H. M. Jiang, X. P. Chen, H. Wu, C. H. Li, Forming characteristics and mechanical parameter sensitivity study on pre-phosphated electro-galvanized sheet steel, Journal of Materials Processing Technology 151 (2004) 248-254.
  • [58] C. Caminaga, R. L. da Silva Issii, S.T. Button, Alternative lubrication and lubricants for the cold extrusion of steel parts, Journal of Materials Processing Technology 179/1-3 (2006) 87-91.
  • [59] Z. Pawlak, P. K. D. V. Yarlagadda, R. Frost, D. Hargreaves, The mechanical strength of phosphates under friction-induced cross-linking, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 201-204.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.