Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Hard nanocomposite nc-TiN/a-SiN films exhibit very attractive mechanical, tribological, optical and electronic properties related to their microstructure and chemical bonding. Design/methodology/approach: In the present work, we investigate ternary thin film TiSiN systems deposited by plasma assisted reactive pulsed magnetron sputtering (PARPMS) from titanium and silicon targets. PARPMS allows one to effectively control ion bombardment by reactive species (e.g., N2 +, N+) on the surface of the growing film by varying the bias voltage (VB) induced by a radiofrequency (RF) power applied to the substrate. Findings: RF biasing without additional heating of the substrate promotes formation of crystals within the nc films. Specifically, (111) crystal orientation at low VB (- 50 V) changed into (200) when VB was increased above - 600 V. At the same time, hardness (H) and reduced Young’s modulus (Er) of the films changed from H ~ 10 GPa and Er ~ 135 GPa to their maximum values of H ~ 25 GPa and Er ~ 248 GPa at VB = - 600 V. For comparison, for films deposited at 300şC and VB = - 200 V, the maximum values of H and Er of ~ 35 GPa and ~ 350 GPa were observed. Practical implications: The use of the PARPMS to effectively control the mechanical properties and microstructure of transition metal nitride systems films. Originality/value: Discussion of evolution of the film microstructure (crystal size and orientation) at constant film composition and relate it with the energetic aspects of the film growth and film characteristics.
Słowa kluczowe
Rocznik
Tom
Strony
416-421
Opis fizyczny
Bibliogr. 30 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
- Regroupement québécois sur les matériaux de pointe (RQMP) and Department of Engineering Physics, École Polytechnique de Montréal, Québec, H3C 3A7 Canada, mardudek@p.lodz.pl
Bibliografia
- [1] S. Veprek, Conventional and new approaches towards the design of novel superhard materials, Surface and Coatings Technology 97 (1997) 15-22.
- [2] L. A. Dobrzański, L. Wosińska, J. Mikuła, K. Gołombek, T. Gawarecki, Investigation of hard gradient PVD (Ti,Al,Si) N coating, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 59-62.
- [3] L. A. Dobrzański, K. Lukaszkowicz, J. Mikuła, D. Pakuła, Structure and corrosion resistance of gradient and multilayer coatings, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 75-78.
- [4] M. Ahlgren, H. Blomqvist, Influence of bias variation on residual stress and texture in TiAlN PVD coatings, Surface and Coatings Technology 200 (2005) 157-160.
- [5] K. Yamamoto, S. Kujime, K. Takahara, Structural and mechanical property of Si incorporated (Ti,Cr,Al)N coatings deposited by arc ion plating process, Surface and Coatings Technology 200 (2005) 1383-1390.
- [6] K. Lukaszkowicz, L. A. Dobrzański, M. Pancielejko, Mechanical properties of the PVD gradient coatings deposited onto the hot work tool steel X40CrMoV5-1, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 115-118.
- [7] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J. P. Riviere, A. Cavaleiro, E. Alves, Characterization of Ti1-xSixNy nanocomposite films, Surface and Coatings Technology 133-14 (2000) 307-313.
- [8] F. Vaz, L. Rebouta, Ph. Goudeau, T. Girardeau, J. Pacaud, J. P. Riviere, A. Traverse, Structural transitions in hard Si-based TiN coatings: The effect of bias voltage and temperature, Surface and Coatings Technology 146–147 (2001) 274-279.
- [9] S. Veprek, S. Reiprich, Concept for the design of novel superhard coatings, Thin Solid Films 268 (1995) 64-71.
- [10] E. Martinez, R. Sanjines, O. Banakh, F. Levy, Electrical, optical and mechanical properties of sputtered CrNy and Cr1-xSixN1.02 thin films, Thin Solid Films 447-448 (2004) 332-336.
- [11] S. Veprek, M. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films 476 (2005) 1-29.
- [12] M. Polok-Rubiniec, L. A. Dobrzański, K. Lukaszkowicz, M. Adamiak, Comparison of the structure, properties and wear resistance of the TiN PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 87-90.
- [13] S. Veprek, The search for novel, superhard materials, Journal of Vacuum Science and Technology A 17 (1999) 2401-2420.
- [14] A. Niederhofer, P. Nesladek, H.-D. Mannling, K. Moto, S. Veprek, M. Jilek, Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1-yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond, Surface and Coatings Technology 120–121 (1999) 173-178.
- [15] M. Benkahoul, P. Robin, S. C. Gujrathi, L. Martinu, J. E. Klemberg-Sapieha, Microstructure and mechanical properties of Cr-Si-N coating prepared by pulsed reactive dual magnetron sputtering, Surface and coating Technology 202 (2008) 3975-3980.
- [16] L. Shizhi, S. Yulong, P. Hongrui, Ti-Si-N films prepared by plasma-enhanced chemical vapour deposition, Plasma Chemistry and Plasma Processing 12 (1992) 287-297.
- [17] J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, D. B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Applied Physics Letter 67 (1995) 2928-2930.
- [18] P. Jedrzejowski, J. E. Klemberg-Sapieha, L. Martinu, Relationship between the mechanical properties and the microstructure of nanocomposite TiN/SiN1.3 coatings prepared by low temperature plasma enhanced chemical vapour deposition, Thin Solid Films 426 (2003) 150-159.
- [19] M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae, K. Nogi, Influence of sputtering conditions on the structure and properties of Ti–Si–N thin films prepared by r.f.- reactive sputtering, Surface and Coatings Technology 174- 175 (2003) 261-265.
- [20] A. Amassian, M. Dudek, O. Zabeida, S. Gujrathi, J. E. Klemberg-Sapieha, L. Martinu, Oxygen incorporation and charge donor activation via subplantation during growth of indium tin oxide films, Journal of Vacuum Science and Technology A 27 (2009) 362-366.
- [21] M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg- Saphieha, L. Martinu, Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering, Thin Solid Films 517 (2009) 4576-4582.
- [22] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, F. Milde, Pulsed magnetron sputter technology, Surface and Coatings Technology 61 (1993) 331-337.
- [23] A. Belkind, A. Freilich, R. Scholl, Using pulsed direct current power for reactive sputtering of Al2O3, Journal of Vacuum Science and Technology A 17 (1999) 1934-1940.
- [24] D. A. Glocker, Influence of the plasma on substrate heating during low-frequency reactive sputtering of AlN, Journal of Vacuum Science and Technology A 11 (1993) 2989-2993.
- [25] A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, W. Moller, Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering, Journal of Vacuum Science and Technology A 22 (2004) 349-355.
- [26] P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surface and Coatings Technology 125 (2000) 335-340.
- [27] W. C. Oliver, G. M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (1992) 1564-1583.
- [28] J. E. Carsley, J. Ning, W. W. Milligan, S. A. Hackney, E. C. Aifantis, A simple, mixtures-based model for the grain size dependence of strength in nanophase metals, Nanostructured Materials 5 (1995) 441-448.
- [29] Y. Ando, I. Sakomoto, I. Suzuki, S. Maruno, Resistivity and structural defects of reactively sputtered TiN and HfN films, Thin Solid Films 343-344 (1999) 246-249.
- [30] T.-Sh. Yeh, J.-M. Wu, L-.J. Hu, The properties of TiN thin films deposited by pulsed direct current magnetron sputtering, Thin Solid Films 516 (2008) 7294-7298.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0040