Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 37, nr 2 | 348-353
Tytuł artykułu

Surface modification and functionalization of nanostructured carbons

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Nanostructured carbon nanomaterials (e.g., nanocrystalline diamond films and particles, carbon nanotubes, carbon onions, fullerenes, etc.) are being extensively explored for numerous biomedical applications in surgical implants, therapy, drug delivery, and biosensoring due to their interesting physical, chemical, and biological properties. Such applications of carbon nanomaterials often require specific surface functionality to be introduced for better integration of these materials with physiological environment. In the last decade, substantial progress has been made in the development of controllable surface modification methods and in the introduction of different functional groups on the surface of carbon nanomaterials. Design/methodology/approach: This paper briefly overviews the surface modification and functionalization approaches for various carbon nanomaterials, and it focuses on the plasma modification and functionalization of nanocrystalline diamond films, diamond nanoparticles, and carbon nanospheres. The results on the surface characterization using FTIR and XPS techniques, and the preliminary studies of cellular response to these modified carbon nanomaterials are presented and discussed. Findings: The results of surface modification of NCD films, detonation nanodiamonds, and carbon nanospheres, demonstrate the flexibility of nanocarbons to attain various surface functionality that can be adjusted for specific applications. It has been shown that neither of tested nanocarbon materials was cytotoxic in this study, although the attachement and proliferation of various cells was strongly affected by the specific type of surface functionalization. Research limitations/implications: At the present, it is not clear to what degree the available surface sites on NCD films or carbon nanoparticles can be occupied with functional groups. Furthermore, while there is clear selectivity of cellular response to H, O, and F surface-terminated NCD films, the role of specific type of surface groups present on carbon nanoparticles has yet to be determined. Practical implications: The development of optimal strategies to functionalize various nanocarbons will have strong impact on the design of efficient nanostructured surfaces and particles for a variety of biological and medical applications. Originality/value: This work adds new insights to the expanding research in biomedical applications of nanoscale carbon materials.
Wydawca

Rocznik
Strony
348-353
Opis fizyczny
Bibliogr. 26 poz., rys., tabl.
Twórcy
autor
  • University of Alabama at Birmingham, 1300 University Boulevard, CH310, Birmingham, AL35294-1170, USA, astan@uab.edu
Bibliografia
  • [1] R. O. Ritchie, R. H. Dauskardt, W. K. Yu, A. M. Brendzel, Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart-valve applications, Journal of Biomedical Materials Research 24 (1990) 189-206.
  • [2] A. Bianco, K. Kostarelos, C. D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes, Chemical Communications 5(2005) 571-577.
  • [3] A. Yan, B.W. Lau, B. S. Weissman, I. Kulaots, N. Y. C. Yang, A. B. Kane, R. H. Hurt, Biocompatible, hydrophilic, supramolecular carbon nanoparticles for cell delivery, Advanced Matererials 18 (2006) 2373-2378.
  • [4] D. M. Gruen, Nanocrystalline Diamond Films, Annual Review of Materials Science 29 (1999) 211-259.
  • [5] W. Kulisch, C. Popov, On the growth mechanisms of nanocrystalline diamond films, Physical Status Solid A 203 (2006) 203-219.
  • [6] D. T. Tran, W. S. Huang, J. Asmussen, T. A. Grotjohn, D. K. Reinhard, Synthesis of ultrananocrystalline diamond films by microwave plasma-assisted chemical vapor deposition, New Diamond and Frontier Carbon Technology 16 (2006) 281-284.
  • [7] V. S. Purohit, D. Jain, V. G. Sathe, V. Ganesan, S.V. Bhoraskar, Synthesis of nanocrystalline diamonds by microwave plasma, Journal of Physics D 40 (2007) 1795-1799.
  • [8] W. S. Huang, D. T. Tran, J. Asmussen, T. A. Grotjohn, D. Reinhard, Synthesis of thick, uniform, smooth ultrananocrystalline diamond films by microwave plasma-assisted chemical vapor deposition, Diamond and Related Materials 15 (2006) 341-344.
  • [9] A. Krueger, Diamond nanoparticles, Jewels for chemistry and physics, Advanced Materials 20 (2008) 2445-2449.
  • [10] K. B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing, Philosophical Transactions of the Royal Society A 365 (2007) 2845-2861.
  • [11] A. Krueger, The structure and reactivity of nanoscale diamond, Journal of Materials Chemistry 18 (2008) 1485-1488.
  • [12] S. Mitura, Nanodiamonds, Journal of Achievements in Materials and Manufacturing Engineering 24(2007) 166-171.
  • [13] J. I. Chao, E. Perevedentseva, P. H. Chung, K. K. Liu, C. Y. Cheng, C. C. Chang, C. L. Cheng, Nanometer-sized diamond particle as a probe for biolabeling, Biophysical Journal 93 (2007) 2199-2204.
  • [14] A. Krueger, New carbon materials: Biological applications of functionalized nanodiamond materials, Chemistry European Journal 14 (2008) 1382-1386.
  • [15] Y. Liu, Z. Gu, J. L. Margrave, V. N. Khabashesku, Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives, Chemistry Materials 16 (2004) 3924-3930.
  • [16] M. A. Ray, T. Tyler, B. Hook, A. Martin, G. Cunningham, O. Shenderova, J. L. Davidson, M. Howell, W. P. Kang, G. McGuire, Cool plasma functionalization of nano-crystalline diamond films, Diamond & Related Materials 16 (2007) 2087-2089.
  • [17] R. J. Narayan, W. Wei, C. Jin, M. Andara, A. Agarwal, R. A. Gerhardt, C. C. Shih, C. M. Shih, S. J. Lin, Y. Y. Su, S. Mamedov, P. Boolchand, R. Ramamurti, R.N. Singh, Microstructural and biological properties of nanocrystalline diamond coatings, Diamond Related Materials 15 (2006) 1935-194.
  • [18] M. D. Fries, Y. K. Vohra, Properties of nanocrystalline diamond thin films grown by MPCVD for biomedical implant purposes, Diamond Related Materials 13 (2004) 1740-1745.
  • [19] S. Szunerits, R. Boukherroub, Different strategies for functionalization of diamond surfaces, Journal of Solid State Electrochemistry 12 (2008) 1205-1218.
  • [20] W. S. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, R. J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates, Nature Materials 1 (2002)253-257.
  • [21] X. Xiao, J. Wang, C. Liu, J. A. Carlisle, B. Mech, B. Greenberg, D. Guven, R. Freda, M. S. Humayun, J. Weiland, O. Auciello, In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips, Journal of Biomedical Materials Research B 77 (2006) 273-277.
  • [22] D. Steinmüller-Nethl, F. R. Kloss, M. Najam-Ul-Haq, M. Rainer, K. Larsson, C. Linsmeier, G. Köhler, C. Fehrer, G. Lepperdinger, X. Liu, N. Memmel, E. Bertel, C. W. Huck, R. Gassner, G. Bonn, Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption, Biomaterials 27 (2006) 4547-4562.
  • [23] W. C. Clem, S. Chowdhury, S. A. Catledge, J. J. Weimer, F. M. Shaikh, K. M. Hennessy, V. V. Konovalov, M. R. Hill, A. Waterfeld, S. L. Bellis, Y. K. Vohra, Mesenchymal Stem Cell Interaction with Ultra Smooth Nanostructured Diamond for Wear Resistant Orthopaedic implants, Biomaterials 29 (2008) 3461-3466.
  • [24] C. J. Tang, A. J. Neves, M. C. Carmo, Infrared absorption study of hydrogen incorporation in thick nanocrustalline diamond films, Applied Physics Letters 86 (2005) 223-225.
  • [25] W. Kulisch, T. Sasaki, F. Rossi, C. Popov, C. Sippel, D. Grambole, Hydrogen incorporationin ultrananocrystalline diamond/amorphous carbon films, Physica Status Solidi 2 (2008) 77-79.
  • [26] C. J. Tang, M. A. Neto, M. J. Soares, A. J. S. Fernandes, A. J. Neves, J. Gracio, A comparison study of hydrogen incorporation among nanocrustalline, microcrystalline and polycrystalline diamond films grown by chemical vapor deposition, Thin Solid Films 515 (2007) 3539-3546.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.