Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 37, nr 2 | 340-347
Tytuł artykułu

Biomechanical characterization of the balloon-expandable slotted tube stents

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the presented work was determination of the biomechanical characteristics of the vascular stent made of stainless steel (Cr-Ni-Mo) and Co-Cr-W-Ni alloy. Additionally, in order to compare obtained results, an experimental analysis of the stent made of stainless steel was carried out. Design/methodology/approach: In order to determine the strength characteristics of the analyzed stent the finite element method was applied. Geometrical model of the vascular stent, which was meshed with the use of the SOLID95 element, was worked out. Selection of the finite element was conditioned by large strains that occur during angioplastic procedure. The established boundary conditions imitated the phenomena during the balloon expansion in real conditions. Findings: The result of the analysis was determination of relationship between equivalent stresses and strains in the individual regions the stent in the function of the diameter’s change (d = 1.20 - 4.00 mm) caused by expanding pressure. Analysis of the obtained results indicates diverse distribution of stresses and strains in the stent depending on the applied biomaterial. Research limitations/implications: The obtained results of the biomechanical analysis of the coronary stent are valuable information for correct design of the geometry and mechanical properties of the applied metallic biomaterials. Strain analysis of the stent indicates that in order to limit a surface reactivity of the stent in blood environment, a deformable surface layer must be applied. Originality/value: Results of the numerical analysis indicate that mechanical properties of the metallic biomaterials used to manufacture the analyzed vascular stent were selected correctly. The correctness of the selection (mechanical properties of the metallic biomaterials) should be confirmed in in vitro tests realized with the use of the coronary angioplasty set.
Wydawca

Rocznik
Strony
340-347
Opis fizyczny
Bibliogr. 15 poz., rys., tabl.
Twórcy
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, mpochrzast@polsl.pl
Bibliografia
  • [1] K. Zboralski, P. Gałecki, A. Wysokiński, A. Orzechowska, M. Talarowska, Quality of life versus emotional operation in circulatory system deseases, Polish Cardiology 67 (2009) 1228-1234.
  • [2] T. Brzostek, Stents in the ischaemic heart diseases, Polish Cardiology 45 (1996) 541.
  • [3] P. Gutowski, The outline of arteries chirurgy. Ed. by PAM, Szczecin 1999.
  • [4] W. Walke, Z. Paszenda, J. Marciniak, Corrosion resistance of Co-Cr-W-Ni alloy designed for implants used in operative cardiology, Engineering of Biomaterials 44 (2005) 47-53.
  • [5] M. Czerniak, A. Sysa, J. Grabarczyk, A. Pełka, P. Niedzielski, T. Wężyk, The surface modification of materials for stents, Engineering of Biomaterials 33 (2004) 35-36.
  • [6] W. Walke, Z. Paszenda, W. Jurkiewicz, M. Pochrząst: Corrosion resistance of vascular stents made of metallic biomaterials, Engineering of Biomaterials, 77-80 (2008) 43-45.
  • [7] W. Walke, Z. Paszenda, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent. Journal of Materials Processing Technology, Journal of Materials Processing Technology (2005) 164-168.
  • [8] W. Kajzer, M, Kaczmarek, J. Marciniak, Biomechanical analysis of stent – oesophagus system, Journal of Materials Processing Technology (2005) 283-287.
  • [9] W. Walke, Z. Paszenda, W. Jurkiewicz, Biomechanical behaviour of coronary stent design with OCC Technology, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 199-202.
  • [10] A. Ziebowicz, J. Marciniak, The use of miniplates in mandibular fractures—biomechanical analysis, Journal of Materials Processing Technology 175 (2006) 452-456.
  • [11] M. Kaczmarek, J. Tyrlik-Held, Z. Paszenda, J. Marciniak, Stents characteristics in application and material aspect, Proceedings of the 12th International Scientific Conference „Achievements in Mechanical and Materials Engineering 2003”, Zakopane, 2003, 421-428.
  • [12] J. Marciniak, Biomaterials. Printing House of the Silesian University of Technology, Gliwice 2002.
  • [13] F. Nabhani, M. Wake, Computer modelling and stress analysis of the lumbar spine, Journal of Materials Processing Technology 127 (2002) 40-47.
  • [14] W. Wu, D.-Z. Yang, M. Qi, W.-Q. Wang, An FEA method to study flexibility of expanded coronary stents, Short technical note. Journal of Materials Processing Technology 184 (2007) 447-450.
  • [15] T. Mahmood, A. Mian, M. R. Amin, G. Auner, R. Witte, H. Herfurth, G. Newaz, Finite element modeling of transmission laser microjoining process, Journal of Materials Processing Technology 186 (2007) 37-44.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.