Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 37, nr 2 | 264-269
Tytuł artykułu

CVD diamond: from growth to application

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main purpose of these studies was to give a short review of basic diamonds properties and indicate possibilities of different applications of this material. As an example, the application of CVD (Chemical Vapour Deposition) diamond layer in electrochemistry was shown. Design/methodology/approach: The diamond layers were synthesized using Hot Filament CVD (HF CVD) technique from a mixture of methanol and hydrogen. The physical and electrochemical properties of the obtained layers were studied by Raman spectroscopy and Cyclic Voltammetry (CV). Findings: It was shown that it is possible to synthesize the diamond layers of different morphology and quality. Raman microprobe measurements showed that quality of diamond films deposited by HF CVD method reflect their morphology. CV measurements showed that the fabricated electrodes had wide potential window almost twice bigger in comparison to the classical Pt electrode. Research limitations/implications: The interaction of diamond layers with chemical and biological environment is not complete. Practical implications: CVD diamond (synthetic diamond made by a chemical vapour deposition process) is an important family of materials used in microelectronic and optoelectronic packaging and for laser and detector windows. Its ultra-high thermal conductivity enables to increase microprocessor frequency and output power of microelectronic and optoelectronic devices. Diamond is resistant to chemical attack and chemical sensors based on the fact it can work in harsh environment. Originality/value: The paper underlines an important role of diamond films as a promising material for production of electrodes for electrochemical applications.
Wydawca

Rocznik
Strony
264-269
Opis fizyczny
Bibliogr. 20 poz., rys., tabl.
Twórcy
autor
autor
  • Institute of Physics, Kazimierz Wielki University, pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland, kfab@ukw.edu.pl
Bibliografia
  • [1] M. Thumm, MPACVD-diamond windows for high-power and long-pulse millimetre wave transmission, Diamond and Related Materials 10 (2001) 1692-1699.
  • [2] A. Badzian, T. Badzian, X. H. Wang, T. Hartnett, Growth Sectors of CVD Diamond, Proceedings of the International Conference “New Diamond Science and Technology”, Washington, 1990, 549-556.
  • [3] D. Choudhary, J. Bellare, Manufacture of gem quality diamonds: a review, Ceramics International 26 (2000) 73-85.
  • [4] A. Van Der Drift, Evolutionary selection, a principle governing growth orientation in vapour- deposited layers, Philips Research Reports 22 (1967) 267-288.
  • [5] K. Fabisiak, W. Masierak, E. Staryga, M. Kozanecki, The Diamond Films and Single Diamond Micro-crystals Studied by Micro-Raman Spectroscopy, Optical Materials 30 (2008) 763-766.
  • [6] B. S. Prawer, R. J. Nemanich, Raman spectroscopy of diamond and doped diamond, The Philosophical Transactions of the Royal Society A 362 (2004) 2537-2565.
  • [7] S. A. Solin, A. K. Ramdas, Raman spectrum of diamond, Physical Review B 1/4 (1970) 1687-1698.
  • [8] S. Mitura, Nanodiamonds, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 166-171.
  • [9] S. Mitura, K. Mitura, P. Niedzielski, P. Louda, V. Danilenko, Nanocrystalline diamond, its synthesis, properties and applications, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 9-16.
  • [10] C. Zweben, Electronic Packaging: Heat Sink Materials, in: Encyclopaedia of Materials: Science and Technology, Vol. 3, Elsevier Science, Oxford, 2001, 2676-2683.
  • [11] C. Zweben, Ultrahigh-Thermal-Conductivity Packaging Materials, Proceedings of the “Semiconductor Thermal Measurement and Management Symposium” SEMI-THERM 21, San Jose, 2005.
  • [12] C. Zweben, High-Performance Thermal Management Materials, Advanced Packaging February (2006).
  • [13] K. A. A. Johnstone, PhD thesis, University of London, 2000.
  • [14] Y. Gurbuz, Diamond semiconductor technology for RF device applications, Solid State Electronics 49 (2005) 1055-1070.
  • [15] J. Grabarczyk, D. Batory, P. Louda, P. Couvrat, I. Kotela, and K. Bakowicz Mitura, Carbon coatings for medical implants, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 107-110.
  • [16] A. P. Malshe W. D. Brown, Diamond Heat Spreaders and Thermal Management, in: Diamond Films Handbook, Marcel Dekker Inc, New York, 2002.
  • [17] E. J. Lerner, Industrial Diamonds Gather Strength, The Industrial Physicist August/September (2002) 8-11.
  • [18] E. Staryga, R. Torz-Piotrowska, A. Wrzyszczyński, K. Paprocki, J. Szmidt, Diamond Electrodes Produced by HF CVD Method for Electrochemical Applications, Proceedings of the 6th International Exhibition of Inventions, Suzhou, China, 2008, 122.
  • [19] Yu. V. Pleskov, M. D. Krotowa, V. I. Polyakov, A. V. Khomich, A. J. Rukovischuikov, B. L. Druz, I. Zaritsky, Electrochemical behaviour of a-C:N:H films, Journal of Electroanalytical Chemistry 519/1-2 (2002) 60-65.
  • [20] R. Tenne, K. Patel, H. Hashimoto, A. Fujishima, Efficient Electrochemical Reduction of Nitrate to Ammonia Using Conductive Diamond Film Electrodes, Journal of Electroanalytical Chemistry 347 (1993) 409-415.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.