Czasopismo
2009
|
Vol. 33, nr 2
|
115-125
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: In this work modification of the PCM method for determination of the surface fractal dimension is proposed. Complete reasoning, leading to correct formula for determination Ai(ä) is presented. In order to test modified method, data sets characterised by fractional fractal dimension were generated. Design/methodology/approach: Three different algorithms to receive data sets describing surfaces with fractional fractal dimension were exploited (two algorithms of midpoint displacement and Falconer algorithm). Findings: In this work detailed methodology for surface multifractal description, which may be directly applied for data obtained from the AFM microscope, was presented. Research limitations/implications: The geometrical features description of surfaces of the coatings obtained in the PVD and CVD processes. Practical implications: In presented work modified PCM method for determination of the surface fractal dimension was proposed. Performed calculations proved that new method make possible to determine this parameter more correctly. Differences are especially significant for rough surfaces, as what tested using series of data sets generated by algorithms for modelling surfaces with fractional fractal dimension. Proposed modified method for determination of the fractal dimension can be used for description of the geometrical features of coatings obtained in the PVD and CVD processes. Originality/value: Fractal and multifractal analysis gives possibility to characterise the extent of irregularities of the analysed surface in the quantitative way.
Rocznik
Tom
Strony
115-125
Opis fizyczny
Bibliogr. 44 poz., rys., tabl.
Twórcy
autor
- Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, waldemar.kwasny@polsl.pl
Bibliografia
- [1] M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, 1993.
- [2] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 2003.
- [3] T. Martyn, Fractal and algorithm object, Nakom, Poznan, 1996 (in Polish).
- [4] H. O. Peitgen, D. Saupe (eds.), The Sciences of Fractal Images, Springer-Verlag, New York, 1988.
- [5] Engineering guide-book, Mathematics, vol. I and II, WNT, Warsaw, 1987.
- [6] H. Xie, J. A. Wang, E. Stein, Direct Fractal Measurement and Multifractal Properties of Fracture Surfaces, Physics Letters A 242 (1998) 41-50.
- [7] H. Xie, J. A. Wang, M. A. Kwaśniewski, Multifractal characterization of rock fracture surfaces, International Journal of Rock Mechanics and Mining Sciences 36 (1999) 19-27.
- [8] W. Kwaśny, L. A. Dobrzański, S. Bugliosi, Ti+TiN, Ti+Ti(CxN1-x), Ti+TiC PVD coatings on the ASP 30 sintered high-speed steel, Journal of Materials Processing Technology 157-158 (2004) 370-379.
- [9] L. A. Dobrzański, W. Kwaśny, Z. Brytan, R. Shishkov, B. Tomov, Structure and properties of the Ti + Ti(C,N) coatings obtained in the PVD process on sintered high speed steel, Journal of Materials Processing Technology 157-158 (2004) 312-316.
- [10] K. Gołombek, L.A. Dobrzański, M. Sokovic, J. Kopac, Functional properties of cemented carbides with PVD and CVD wear resistant coatings, Mechanic 4 (2005) 321-327 (in Polish).
- [11] A. J. Perry, The surface smoothing of TiN coatings deposited by CVD or PVD methods, Surface and Coatings Technology 132 (2000) 21-31.
- [12] A. Provata, P. Falaras, A. Xagas, Fractal features of titanium oxide surfaces, Chemical Physic Letters 297 (1998) 484-490.
- [13] E. Charkaluk, M. Bigerelle, A. Iost, Fractals and fracture, Engineering Fracture Mechanics 61 (1998) 119-139.
- [14] L. Czarnecki, A. Garbacz, J. Kurach, On the characterization of polymer concrete fracture surface, Cement and Concrete Composites 23 (2001) 399-409.
- [15] C. Atzeni, G. Pia, U. Sanna, N. Spanu, A fractal model of the porous microstructure of earth-based materials, Construction and Building Materials 22 (2008) 1607-1613.
- [16] C. Dominkovics, G. Harsányi, Fractal description of dendrite growth during electrochemical migration, Microelectronics Reliability 48 (2008) 1628-1634.
- [17] T. Ficner, Fractal strength of cement gels and universal dimension of fracture surfaces, Theoretical and Applied Fracture Mechanics 50 (2008) 167-171.
- [18] W. Yili, D. Baiyu, L. Jie, L. Jia, S. Baoyou, T. Hongxiao, Surface analysis of cryofixation-vacuum-freeze-dried polyaluminum chloride–humic acid (PACl–HA) floks, Journal of Colloid and Interface Science 316/2 (2007) 457-466.
- [19] Y. Jiang, B. Li, Y. Tanabashi, Estimating the relation between surface roughness and mechanical properties of rock joint, International Journal of Rock Mechanics and Mining Sciences 43/6 (2006) 837-846.
- [20] H. W. Zhou, H. Xie, Direct Estimation of the Fractal Dimensions of a Fracture Surface of Rock, Surface Review and Letters 10/5 (2003) 751-762.
- [21] A. Yan, K. R. Wu, Z. Dong, Y. Wu, Influence of concrete composition on the characterization of fracture surface, Cement and Concrete Composites 25/1 (2003) 153-157.
- [22] Z. Y. Yang, C. C. Di, A directional method for directly calculating the fractal parameters of joint surface roughness, International Journal of Rock Mechanics and Mining Sciences 38/8 (2001) 1201-1210.
- [23] H. Song, L. Min, X. Jun, S. Lushi, L. Peisheng, S. Sheng, S. Xuexin, Fractal characteristic of three Chinese coals, Fuel 83/10 (2004) 1307-1313.
- [24] Y. Ju, S. Sudak, H. Xie, Study on stress wave propagation in fractured rocks with fractal joint surfaces, International Journal of Solids and Structures 44/13 (2007) 4256-4271.
- [25] W. Kwaśny, L. A. Dobrzański, Deposition conditions effect on physical properties and surface topography fractal dimension of the Ti+Ti(CxN1-x) coatings obtained in the PVD process, Materials Engineering 3/140 (2004) 607-610.
- [26] W. Kwaśny, L. A. Dobrzański, M. Pawlyta, W. Gulbiński, Fractal nature of surface topography and physical properties of the coatings obtained using magnetron sputtering, Journal of Materials Processing Technology 157-158 (2004) 183-187.
- [27] W. Kwaśny, L. A. Dobrzański, Deposition conditions effect on physical properties and surface topography fractal dimension of the TiN, Ti+Ti(C,N) and TiC coatings obtained in the PVD process, Mechanic 4 (2005) 328-332 (in Polish).
- [28] W. Kwaśny, L. A. Dobrzański, Structure, physical properties and fractal character of surface topography of the Ti+TiC coatings on sintered high speed steel, Journal of Materials Processing Technology 164-165 (2005) 1519-1523.
- [29] W. Kwaśny, L. A. Dobrzański, Structure, physical properties and fractal character of surface topography of the Ti+TiC coatings on sintered high speed steel, Proceedings of the 13th International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME’2005, Gliwice–Wisła, 2005, 387-390.
- [30] W. Kwaśny, L. A. Dobrzański, Deposition conditions effect on physical properties and surface topography fractal dimension of the PVD coatings obtained on sintered high speed steel, Proceedings of the 3rd Scientific Conference “Materials, Mechanical and Manufacturing Engineering” M3E’2005, Gliwice–Wisła, 2005, 151-158 (in Polish).
- [31] W. Kwaśny, J. Mikuła, L.A . Dobrzański, Fractal and multifractal characteristics of coatings deposited on pure oxide ceramics, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 257-260.
- [32] W. Kwaśny, D. Pakuła, M. Woźniak, L. A. Dobrzański, Fractal and multifractal characteristics of CVD coatings deposited onto the nitride tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 371-374.
- [33] W. Kwaśny, M. Woźniak, J. Mikuła, L. A. Dobrzański, Structure, physical properties and multifractal characteristics of the PVD and CVD coatings deposition onto the Al2O3+TiC ceramics, Journal of Computational Materials Sciences and Surface Engineering 1/1 (2007) 97-113.
- [34] A. B. Chhabra, R. V. Jensen, Direct determination of the f(α) singularity spectrum, Physical Review Letters 62 (1989) 1327-1330.
- [35] S. Stach, J. Cybo, J. Chmiela, Fracture surface fractal or multifractal?, Materials Characterization 46/2-3 (2001) 163-167.
- [36] N. E. Odling, Natural fracture profiles, fractal dimension and joint roughness coefficients, Rock Mechanics and Rock Engineering 27 (1994) 135-153.
- [37] A. B. Chabra, Ch. Meneveau, R. V. Jensen, K. R. Sreenivasan, Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence, Physical Review A 40 (1989) 5284-5294.
- [38] E. Ott, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, 1993.
- [39] H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals. New Frontiers of Science, Springer-Verlag, New York, 1992.
- [40] H.-S. Yu, X. Sun, S.-F. Luoa, Y.-R. Wang, Z.-Q. Wu, Multifractal spectra of atomic force microscope images of amorphous electroless Ni–Cu–P alloy, Applied Surface Science 191/1-4 (2002) 123-127.
- [41] S. Stach, J. Cwajna, S. Roskosz, J. Cybo, Multifractal description of fracture morphology: Quasi 3D analysis of fracture surfaces, Materials Science 23 (2005) 573-581.
- [42] S. Stach, J. Cybo, Multifractal description of fracture morphology: Theoretical basis, Materials Characterization 51 (2003) 79-85.
- [43] S. Stach, S. Roskosz, J. Cybo, J. Cwajna, Multifractal description of fracture morphology: Investigation of the fractures of sintered carbides, Materials Characterization 51 (2003) 87-93.
- [44] S. Stach, M. Sozańska, J. Cybo, J. Cwajna, Evaluation of the share of overlaps 34CrMo4 steel fractures by surface stereometry method and multifractal analysis, Acta Metallurgica Slovaca 10 (2004) 768-770.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0019