Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 61, no. 4 | 341-365
Tytuł artykułu

Ascending speleogenesis of Sokola Hill: a step towards a speleogenetic model of the Polish Jura

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the origin of caves in Sokola Hill (Polish Jura). The caves abound in solution cavities in the walls and ceilings, many of them arranged hierarchically, some others arranged in rising sets. Blind chimneys and ceiling half-tubes are also present. These features collectively indicate that the caves originated under Phreatic conditions by an ascending flow of water, probably of elevated temperature. Phreatic calcite spar, crystallized from water of elevated temperature, lines the cave walls. During the formation of the caves the Jurassic limestone aquifer was confined by impermeable cover. Three possible scenariosfor the origin of the caves are suggested. The firstscenario pointsto formation of the caves during the Palaeogene prior to the removal of the confining Cretaceous marls. The second connectsthe origin of the caves with regional palaeoflow driven by tectonic loading by Carpathian nappes to the south, while the third refers to local topographically driven palaeoflow. Both the second and third scenarios assume that the Polish Jura had a cover of Miocene impermeable clastics. All the scenarios account for the origin of the caves in Sokola Hill and explain the common occurrence of ascending caves throughout the Polish Jura. In the subsequentstages of evolution the caves were partly filled with various deposits. Conglomerates composed of Jurassic limestone clasts, quartz sands and sandstones are preserved as erosional remnants, locally covered by or interfingered with calcite flowstones. The clastic deposits were laid down by surface streams that invaded the caves earlier than 1.2 Ma. The caves were not invaded by water from Pleistocene glaciers, which is proved by the assemblage of heavy minerals in the cave clastics.
Wydawca

Rocznik
Strony
341-365
Opis fizyczny
Bibliogr. 95 poz.,
Twórcy
autor
autor
autor
Bibliografia
  • 1. Andre, B.J. and Rajaram, H. 2005. dissolution of limestones fractures by cooling waters: Early development of hypogene karst systems. Water Resources Research, 41: W01015 JAN 22 2005.
  • 2. Audra, P., Hoblea, F., Bigot, J.-Y. and Nobecourt, J.-C. 2007. The role of condensation-corrosion in thermal speleogenesis: study of a hypogenic sulfidic cave in Aix-les-Bains, France. Acta Carsologica, 36, 185–194.
  • 3. Bakalowicz, M.I., Ford, D.C., Miller, T.E., Palmer, A.N. and Palmer, M.V. 1987. Thermal genesis of dissolution caves in the Black Hills, South Dakota. Geological Society of America Bulletin, 99, 729–738.
  • 4. Bednarek, J., Górecka, E. and Zapaśnik, T. 1985. Tectonically controlled development of ore mineralization in Jurassic sequence of the Silesian-Cracow Monocline. Rocznik Polskiego Towarzystwa Geologicznego, 53, 43–62. [in Polish, with English summary]
  • 5. Bosák, P., Ford, D.C. and Głazek, J. 1989. Terminology. In: P. Bosák, D.C. Ford, J. Głazek and I. Horáček (Eds), Paleokarst, A Systematic and Regional Review, pp. 25–32. Akademia, Prague.
  • 6. Bosák, P., Głazek, J., Gradziński, R. and Wójcik, Z. 1978. Origin and age of the Rudice type pocket deposits. Kras i Speleologia, 2, 11–15. [in Polish, with English summary]
  • 7. Bottrell, S.H., Crowley, S. and Self, C. 2001. Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic composition of cave mineralization. Geofluids, 1, 103–121.
  • 8. Burkhardt, R. 1978. Heavy minerals as structural indicators for deposition area. Kras i Speleologia, 2, 17–21. [in Polish, with English summary]
  • 9. DeCelles, P.G. and Giles, K.A. 1996. Foreland basin systems. Basin Research, 8, 105–123.
  • 10. Dublyansky, V.N. 1980. Hydrothermal karst in Alpine folded belt of the southern part of U.S.S.R. Kras i Speleologia, 3, 18–37.
  • 11. Dublyansky, Y.V. 1995. Speleogenetic history of the Hungarian hydrothermal karst. Environmental Geology, 25, 24–35.
  • 12. Dublyansky, Y.V. 1997. Hydrothermal Cave Minerals. In: C. Hill and P. Forti (Eds), Cave Minerals of the World, pp. 252–255. National Speleological Society, Huntsville.
  • 13. Dublyansky, Y.V. 2000a. Dissolution of carbonates by geothermal waters. In: A.B. Klimchouk, D.C. Ford, A.N. Palmer and W. Dreybrodt (Eds), Speleogenesis. Evolution of Karst Aquifers, pp. 158–159. National Speleological Society; Huntsville.
  • 14. Dublyansky, Y.V. 2000b. Hydrothermal speleogenesis: Its settings and peculiar features. In: A.B. Klimchouk, D.C. Ford, A.N. Palmer and W. Dreybrodt (Eds), Speleogenesis. Evolution of Karst Aquifers, pp. 292–297. National Speleological Society; Huntsville.
  • 15. Duliński, M., Florkowski, T., Grabczak, J. and Różański, K. 2001.Twenty-five years of systematic measurements of isotopic composition of precipitation in Poland. Przegląd Geologiczny, 49, 250–256. [in Polish, with English summary]
  • 16. Dyjor, S. and Sadowska, A. 1986. Correlation of the Younger Miocene deposits in the Silesian part of the Carpathian Foredeep and south-western part of the Polish Lowland Basin. Zeszyty Naukowe AGH, Kwartalnik Geologia, 12, 25–36.
  • 17. Dziadzio, P., Różniak, R. and Szulc, J. 1993. Origin of the Pleistocene calcite flowstones of two caves (Jaskinia Psia and Jaskinia Naciekowa) in the West Tatra Mts. Przegląd Geologiczny, 41, 767–775. [in Polish, with English summary]
  • 18. Ford, D.C. 1989. Features of the genesis of Jewel Cave and Wind Cave, Black Hills, South Dakota. National Speleological Society Bulletin, 51, 100–110.
  • 19. Ford, D.C., Lundberg, J., Palmer, A.N., Palmer, M.V., Dreybrodt, W., Schwarcz, H.P. 1993. Uranium-series dating of the draining of an aquifer: The example of Wind Cave, Black Hills, South Dakota. Geological Society of America Bulletin, 105, 241–250.
  • 20. Ford, D. and Williams, P. 2007. Karst Hydrogeology and Geomorphology, pp. 1–562. Wiley; Chichester.
  • 21. Friedman, I. and o’Neil, J.R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer, M. (Ed.), Data of Geochemistry. US Geological Survey Professional Paper, 440-KK, 1–12.
  • 22. Frumkin, A. and Fischhendler, I. 2005. Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrologial conditions. Geomorphology, 67, 457–471.
  • 23. Geyh, M.A., 2001. Reflection on the 230Th/U dating of dirty material. Geochronometria, 20, 9–14.
  • 24. Głazek, J. 1989. Paleokarst of Poland. in: P. Bosák, D.C. Ford, J. Głazek and I. Horáček (Eds), Paleokarst, A Systematic and Regional Review, pp. 77–105. Akademia; Praga.
  • 25. Głazek, J. and Szynkiewicz, A. 1980. Karst between the Pilica and Warta and its practical significance. In: W. Barczyk (Ed.), Przewodnik LII Zjazdu Polskiego Towarzystwa Geologicznego, Bełchatów, 11–14 września 1980. Wydawnictwa Geologiczne, pp. 84–99. Warszawa. [in Polish]
  • 26. Głazek, J. and Szynkiewicz, A. 1987. Stratigraphy of young Tertiary and Quaternary karst deposits and their palaeogeographical significance. in: A. Jahn and S. Dyjor (Eds), Problemy młodszego neogenu i eoplejstocenu w Polsce. Ossolineum, Wrocław, 113–130. [in Polish]
  • 27. Gorka, P. and Hercman, H. 2002. URANOTHOR v. 2.6. Delphi Code of calculation program and user guide. MS, Archive of Quaternary Geology Department, Institute of Geological Sciences, PAS, Warsaw.
  • 28. Gradziński, M., Motyka, J. and Górny, A. 2009.Artesian origin of a cave developed in an isolated horst: A case study of Smocza Jama (kraków Upland, Poland). Annales Societatis Geologorum Poloniae, 79, 159–168.
  • 29. Gradziński, M., Rospondek, M. and Szulc, J. 1997. Paleoenvironmental controls and microfacies variability of the flowstone cover from the Zvonivá Cave in the Slovakian Karst. Slovak Geological Magazine, 3, 299–313.
  • 30. Gradziński, R. 1962. Origin and development of subterranean karst in the southern part of the Cracow Upland. Rocznik Polskiego Towarzystwa Geologicznego, 32, 429–492. [in Polish, with English summary]
  • 31. Gradziński, R. 1977. Sedimentation of “moulding sands” on karstified limestone surface in the middle part of Kraków Wieluń Upland. Kras i Speleologia, 1, 59–70. [in Polish, with English summary]
  • 32. Heliasz, Z., Ptak, B., Więckowski, R. and Zieliński, T. 1982. Detailed geological map of Poland, 1:50 000, sheet Janów (846). Wydawnictwa Geologiczne, Warszawa. [in Polish]
  • 33. Heliasz, Z., Ptak, B., Więckowski, R. and Zieliński, T. 1987. Explanation to detailed geological map of Poland sheet Janów (846) 1:50 000, pp. 1–66. Wydawnictwa Geologiczne; Warszawa. [in Polish]
  • 34. Hercman, H. 2000. Reconstruction of palaeoclimatic changes in central Europe between 10 and 200 thousand years BP, based on analysis of growth frequency of speleothems. Studia Quaternaria, 17, 35–70.
  • 35. Hill, C.A. 2000. Overview of the geologic history of cave development in the Guadelupe Mountains, New Mexico and Texas. Journal of Cave and Karst Studies, 62, 60–71.
  • 36. Hill, C. and Forti, P. 1997. Cave Minerals of the World, pp. 1–463. National Speleological Society; Huntsville.
  • 37. Horáček, I. and Hanák, V. 1983-1984. Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis, 21, 22, 20–29.
  • 38. Immenhauser, A., Dublyansky, Y.V., Verwer, K., Fleitman, D. and Pashenko, S.E. 2007. Textural, elemental, and isotopic characteristics of Pleistocene phreatic cave deposits (Jabal Madar, Oman). Journal of Sedimentary Research, 77, 68–88.
  • 39. Ivanovich, M. and Harmon, R.S. 1992. Uranium Series Disequilibrium. Applications to Environmental Problems, pp. 1–571. Clarendon; Oxford.
  • 40. Jarosiński, M., Poprawa, P. and Ziegler, P. 2009. Cenozoic dynamic evolution of the Polish Platform. Geological Quarterly, 53, 3–26.
  • 41. Jarosiński, M., Zuchiewicz, W., Poprawa, P. and Badura, J. 2008. Cenozoic geodynamic evolution of the Carpathian foreland in Poland. In: T. McCann (Ed.), The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic, pp. 1258–1270. The Geological Society; London.
  • 42. Jasionowski, M. 1995. Geological structure of the western part of the Carpathian Foredeep. Biuletyn Państwowego Instytutu Geologicznego, 371, 5–23. [in Polish, with English summary]
  • 43. Kaufman, A. and Broecker, W.S. 1965. Comparison of 230th and 14C ages for carbonate materials from Lakes Lahontan and Bonneville. Journal of Geophysical Research, 70, 4039–4054.
  • 44. Kleczkowski, A. 1986. Underground waters of the Nida Basin. Studia Ośrodka Dokumentacji Fizjograficznej, 14, 239–248. [in Polish, with English summary]
  • 45. Klimaszewski, M. 1958. The geomorphological develolopment of Poland’s territory in the pre-Quaternary period. Przegląd Geograficzny, 30, 2–43. [in Polish, with English summary]
  • 46. Klimchouk, A. 2007. Hypogene Speleogenesis. Hydrogeological and Morphogenetic Perspective, pp. 1–106. National Cave and Karst Institute; Carlsbad.
  • 47. Klimchouk,A. 2009. Morphogenesis of hypogenic caves. Geomorphology, 106, 100–117.
  • 48. Klimek, K. 1966. Deglaciation of northern part of Silesia-Cracow Upland during the Middle-Polish glaciation. Prace Geograficzne, Instytut Geografii PAN, 53, 1–117. [in Polish, with English summary]
  • 49. Krysowska-Iwaszkiewicz, M. 1974. Mineralogical and petrographical study of Cenozoic continental deposits of the Cracow Upland. Prace Mineralogiczne, Komisja Nauk Mineralogicznych PAN, Oddział w Krakowie, 35, 7–82. [in Polish, English summary]
  • 50. Kutek, J. and Głazek, J. 1972. The Holy Cross area, Central Poland, in the Alpine cycle. Acta Geologica Polonica, 22, 603–653.
  • 51. Lewandowski, J. 1994. Fluvioperiglacial covers of the Częstochowa upland. Przegląd Geologiczny, 42, 1009–1013. [in Polish, with English summary]
  • 52. Lewandowski, J. 2009. Cenozoic development of the Częstochowa Upland – disputable problems. In: K. Stefaniak, A. Tyc and P. Socha (eds), Karst of the Częstochowa Upland and of the Eastern Sudetes. Palaeoenvironments and protection, pp. 57–66. Faculty of Earth Science University of Silesia, Zoological Institute, University of Wrocław; Sosnowiec-Wrocław.
  • 53. Machel, H.G. and Cavell, P. 1999. Low-flux, tectonically induced squeegee fluid flow (“hot flush”) into the Rocky Mountain Foreland basin. Bulletin of the Canadian Petroleum Geology, 47, 510–533.
  • 54. Madeyska, T. 2009. Clastic cave sediments in the Częstochowa Upland. In: K. Stefaniak, A. Tyc and P. Socha (Eds), Karst of the Częstochowa Upland and of the Eastern Sudetes. Palaeoenvironments and protection, pp. 67–84. Faculty of Earth Science university of Silesia, Zoological Institute, University of Wrocław; Sosnowiec-Wrocław.
  • 55. Madeyska-Niklewska, T. 1969. Upper Pleistocene deposits in caves of the Cracow Upland. Acta Geologica Polonica, 19, 341–392. [in Polish, with English summary]
  • 56. Marcinowski, R. 1970. The cretaceous transgressive deposits east of Częstochowa (Polish Jura chain). Acta Geologica Polonica, 20, 413–449.
  • 57. Marcinowski, R. 1974. The transgressive Cretaceous (Upper Albian through Turonian) deposits of the Polish Jura Chain. Acta Geologica Polonica, 24, 117–217.
  • 58. Maślankiewicz, K. 1937. The caverns in the environs of Olsztyn. Ochrona Przyrody, 17, 85–93. [in Polish, with English summary]
  • 59. Matyja, B.A. and Wierzbowski, A. 1992. Olsztyn, cyanobacteria-sponge biohermal complex; Bifurcatus and Bimammatum Zones. In: B.A. Matyja, A. Wierzbowski. and A. Radwański (Eds), Oxfordian and Kimmeridgian Working Groups Meeting, Guide Book & Abstracts, pp. 35–37. International Subcommission on Jurassic Stratigraphy; Warszawa.
  • 60. Müller, P. 1989. Hydrothermal paleokarst of Hungary. In: P. Bosák, D.C. Ford, J. Głazek and I. Horáček (Eds), Paleokarst,ASystematic and Regional Review, pp. 155–163. Akademia; Prague.
  • 61. Müller, P. and Sárváry, I. 1977. Some aspects of development in Hungarian speleology theories during the last 10 years. Karszt és Barlang, Special Issue, 53–60.
  • 62. O’Neil, J.R., Clayton, R.N. and Mayeda, T.K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51, 5547–5558.
  • 63. Oliver, J. 1986. Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99–102.
  • 64. Osborne, R.A.L. 2004. The troubles with cupolas. Acta Carsologica, 33, 9–36.
  • 65. Osborne, R.A.L. 2007. Cathedral Cave, Wellington Caves, New South Wales, Australia. A multiphase, non-fluvial cave. Earth Surface Processes and Landforms, 32, 2075–2103.
  • 66. Osborne, R.A.L. 2009. Hypogene caves in deformed (fold belt)strata: observations from Eastern Australia and Central Europe. In: A. Klimchouk and D.C. Ford (Eds), Hypogenic Speleogenesis and Karst Hydrology of Artesian Basin. Ukrainian Institute of Speleology and Karstology, Special Paper, 1, 33–43.
  • 67. Oszczypko, N., Krzywiec, P., Popadyuk, I. and Peryt, T. 2005. Carpathian Foredeep Basin (Poland and Ukraine): Its sedimentary, structural, and geodynamic evolution. In: J. Golonka and F.J. Picha (Eds), The Carpathians and their Foreland: Geology and Hydrocarbon Resources. American Association of Petroleum Geology Memoir, 84, 293–350.
  • 68. Palmer, A.N. 1991. Origin and morphology of limestone caves. Geological Society of America Bulletin, 103, 1–21.
  • 69. Palmer, A.N. 2007. Cave Geology, pp. 1–454. Cave Books; Dayton.
  • 70. Palmer, A.N. and Palmer, M. 2000. Speleogenesis of the Black Hills maze caves, South Dakota, U.S.A. In: A.B. Klimchouk, D.C. Ford, A.N. Palmer and W. Dreybrodt (Eds), Speleogenesis. Evolution of Karst Aquifers, pp. 274–282. National Speleological Society; Huntsville.
  • 71. Pluta, I. and zuber, A. 1995. Origin of brines in the Upper Silesian Coal Basin (Poland) inferred from stable isotope and chemical data. Applied Geochemistry, 10, 447–460.
  • 72. Postawa, T. 2004. Changesin bat fauna during the Middle and Late Holocene as exemplified by thanatocenoses dated with 14C AMS from Kraków-Częstochowa Upland caves, Poland. Acta Chiropterologica, 6, 269–292.
  • 73. Pulina, M., Żaba, J. and Polonius, A. 2005. Relation between karst form of Smoleń-Niegowonice Range and tectonic activity of Cracow-Wieluń Upland. Kras i Speleologia, 11, 39–85.
  • 74. Pura, D. 2007. Origin and evolution of caves of Sokola Hill. Unpublished MSc thesis, Institute of Geological Sciences, Jagiellonian University, pp. 92.
  • 75. Pura, D., Gradziński, M., Kicińska, D. and URban, J. 2005. Remarks on the origin of the caves in western part of the Sokole Hills. In: M. Gradziński and M. Szelerewicz (Eds), Materiały 39. Sympozjum Speleologicznego, p. 40. Sekcja Speleologiczna PTP; Kraków. [in Polish]
  • 76. Racinowski, R. 2008. Significance of heavy minerals analysisin the studies of the Quaternary depositsin Poland. Annales Universitatis Mariae Curie-Skłodowska, b, 63, 7–44. [in Polish, with English summary]
  • 77. Różycki, S.Z. 1960. Quaternary of the Częstochowa Jura Chain and the adjacent areas. Przegląd Geologiczny, 8, 424–429. [in Polish, with English summary]
  • 78. Rudnicki, J. 1978. Role of convection in shaping subterranean karst forms. Kras i Speleologia, 2, 92–101.
  • 79. Rutkowski, J., Zuchiewicz, W., Bluszcz, A. and Helios-Rybicka, E. 1998. Lithology and glacial sediments of Sanian-2 (Elsterian-2) stage in Tenczynek Basin, Kraków region, Southern Poland. Annales Societatis Geologorum Poloniae, 68, 247–265.
  • 80. Schwarcz, H.P. and Latham A.G. 1989. Dirty calcites I: Uranium series dating of contaminated calcite using leachates alone. Isotope Geoscience, 80, 35–43.
  • 81. Skalski, A. and Wójcik, Z. 1968. Caves of the Sokole Góry Mts. reserve near Częstochowa. Ochrona Przyrody, 33, 237–279. [in Polish, with English summary]
  • 82. Spötl, Ch., Dublyansky, Y., Meyer, M. and Mangini, A. 2009. Identifying low-temperature hydrothermal karst and palaeowaters using stable isotopes: a case study from an alpine cave, Entrische Kirche, Austria. International Journal of Earth Sciences, 98, 665–676.
  • 83. Stefaniak, K., Socha, P., Tyc, A., Cyrek, K., and Nadachowski, A. 2009. Caves, rock shelters and palaeontologicalsitesin quarries of the Częstochowa Upland – catalogue of important speleological features. In: K. Stefaniak, A. Tyc and P. Socha (Eds), Karst of the Częstochowa Upland and of the Eastern Sudetes, pp. 307–354. Palaeoenvironments and Protection. Faculty of Earth Science University of Silesia, Zoological Institute, University of Wrocław; Sosnowiec-Wrocław.
  • 84. Swinnerton, A.C. 1932. Origin of limestone caverns. Bulletin of the Geological Society of America, 43, 662–693.
  • 85. Szelerewicz, M. and Górny, A. 1986. Caves of Krakowsko–Wieluńska Upland, pp. 1–200. Wydawnictwo PTTK „KRAJ”; Warszawa-Kraków.
  • 86. Szunyogh, G. 1989. theoretical investigation of the development of spheroidal niches of thermal water origin. Second approximation. In: 10th Interbnational Congress of Speleology, Proceedings III, pp. 766–768. Hungarian Speleological Society; Budapest.
  • 87. Szymczakowski, W. 1959. Verbreitung der Familie Catopidae (Coleoptera) in Polen. Polskie Pismo Entomologiczne, 29, 1–271. [in Polish, with German summary]
  • 88. Trammer, J. 1989. Middle to Upper Oxfordian sponges of the Polish Jura. Acta Geologica Polonica, 39, 49–91.
  • 89. Tyc, A. 2009a. Hypogenic ascending speleogenesis in the Kraków-Częstochowa Upland (Poland) – Evidence in cave morphology and surface relief. In: A. Klimchouk and D. Ford (Eds), Hypogenic Speleogenesis and Karst Hydrology of Artesian Basin. Ukrainian Institute of Speleology and Karstology, Special Paper, 1, 201–208.
  • 90. Tyc, A. 2009b. Karst and caves of the Częstochowa Upland – morphology and the outline of speleogenesis. In: K. Stefaniak, A. Tyc and P. Socha (Eds), Karst of the Częstochowa Upland and of the Eastern Sudetes. Palaeoenvironments and Protection, pp. 11–36. Faculty of Earth Science University of Silesia, Zoological institute, University of Wrocław; Sosnowiec-Wrocław.
  • 91. Urban, J. and Gradziński, M. 2004. Traditions and perspectives of protection of “Sokole Góry” nature reserve. In: Partyka, J. (Ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej. Tom 1. Przyroda, pp. 89–95. Ojcowski Park Narodowy; Ojców. [in Polish, with English summary]
  • 92. Walaszczyk, I. 1992. Turonian through Santonian deposits of the Central Polish Uplands, their facies development, inoceramid paleontology and stratigraphy. Acta Geologica Polonica, 42, 1–122.
  • 93. White, E.L. and White, W.B. 2000. Breakdown morphology. In: A.B. Klimchouk, D.C. Ford, A. N. Palmer and W. Dreybrodt (Eds), Speleogenesis. Evolution of Karst Aquifers, pp. 427–429. National Speleological Society; Huntsville.
  • 94. Wójcik, Z. 2004. On the history of calcareous spar mining in Małopolska Upland. In: J. Partyka (Ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej, Tom 2. Kultura. pp. 345–350. Ojcowski Park Narodowy; Ojców. [in Polish, with English summary]
  • 95. Zuber, A., Weise, S.M., Motyka, J., Osenbrück, K. and Różański, K. 2004. Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from combined isotope, noble gas and chemical data. Journal of Hydrology, 286, 87–112.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3453-3043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.