Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 58, nr 4 | 635-644
Tytuł artykułu

Vascular plants versus mosses in lakeland and riverine mires in two regions of eastern Poland

Warianty tytułu
Konferencja
All-Poland Scientific Conference "Interspecies Relationships at Levels of Organization" (2009 ; Krasnobród)
Języki publikacji
EN
Abstrakty
EN
Our research was conducted in two different mire habitats . in the minerotrophic and ombrotrophic mires adjoining the lakes (LM) of the Łęczna-Włodawa Lakeland and in the eutrophic and calcium-rich mires of the river valleys (RM) of the Roztocze Highlands region (both study regions in Eastern Poland). The study aimed to evaluate (1) the position of mire phytocoenoses in the environmental gradient - from minerotrophic to ombrotrophic ones, (2) the influence of the species and life-form composition of plant communities on the density of bryophytes, and (3) the quantitative and sociological relations between the density of vascular plants and bryophytes. Phytosociological releves (180) were made in six lakeland mires and in four river valleys. The area of each phytosociological releves (16-25 m2) represented species composition and vertical structure of communities. In the study of the relation vascular plants-bryophytes we took into consideration the following parameters: species abundance, cover of particular plant layers (trees, shrubs, herbs, bryophytes), and the number of species in particular life-form groups. In the LM the cover of particular layers was correlated negatively with the abundance of Sphagnum mosses. Betula pendula, B. pubescens and Frangula alnus overgrowing the LM affect negatively the abundance of some peat mosses. Less distinct relations were found between the tree density and bryophyte cover in the RM, but there is a positive correlation between the shrub cover and its predominant species - F. alnus - and the abundance of Polytrichum commune. Taking into account the relations between the herbaceous cover and the abundance of bryophytes, the dependencies are also less pronounced in the RM phytocoenoses. A negative effect of the herbaceous cover and its species richness on the abundance of P. commune was observed, as well as positive relation between the number of herbaceous species and the abundance of Calliergonella cuspidata. In the LM phytocoenoses, a negative correlation was found in the case of S. palustre, while in the case of Aulacomnium palustre and S. cuspidatum the relations were positive. Among herbaceous plants of LM habitats the biggest number of statistically significant correlations were observed for abundance of Carex lasiocarpa and different bryophytes, while in the RM habitats the correlations between the abundance of bryophyte and vascular plant layers are less distinct.
Wydawca

Rocznik
Strony
635-644
Opis fizyczny
Bibliogr. 47 poz.,Il., tab.,
Twórcy
autor
Bibliografia
  • 1. Åberg E. 1992 – Tree colonisation of three mires in southern Sweden (In: Peatland Ecosystems and Man: an Impact Assessment, Eds: O.M. Bragg, P.D. Hulme, H.A.P. Ingram, R.A. Robertson) – Dept. Biol. Sci., Univ. of Dundee, Dundee, Scotland, pp. 268–270.
  • 2. Berendse F., Van Breemen N., Rydin H., Buttler A., Heijmans M., Hoosbeek M.R., Lee J.A., Mitchell E., Saarinen T., Vasander H., Wallén B. 2001 – Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs – Global Change Biol. 7: 591–598.
  • 3. Bergamini A., Pauli D., Peintinger M., Schmid B. 2001 – Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants – J. Ecol. 89: 920–929.
  • 4. Bragazza L. 2006 – A decade of plant species changes on a mire in the Italian Alps: vegetation-controlled or climate-driven mechanisms? – Climatic Change, 77: 415–429.
  • 5. Breeuwer A., Heijmans M.M.P.D., Robroek B.J.M., Berendse F. 2008 – The effect of temperature on growth and competition between Sphagnum species – Oecologia, 156: 155–167.
  • 6. Budyś A. 2004 – Persistence and changes in raised bogs’ vascular flora in a coastal zone exemplified by the Bielawskie Błoto bog (Kaszuby Coastal Region) (In: The Future of Polish Mires, Eds: L. Wołejko, J. Jasnowska) – Soc. Scient. Stetinensis, Agricult. Univ. Szczecin, pp. 171–176.
  • 7. Clymo R.S., Hayward P.M. 1982 – The ecology of Sphagnum (In: Bryophyte Ecology, Ed: A.J.E. Smith) – Chapman and Hall, London, pp. 229–289.
  • 8. Clymo R.S., Turunen J., Tolonen K. 1998 - Carbon accumulation in peatland – Oikos, 81: 368–388.
  • 9. Czarnecka B., Sugier P. 1998 – Landscape changes in macro- and microscales – Ekológia (Bratislava) 17, suppl. 1: 177–188.
  • 10. Ćwiklińska P. 2004 – Selected features of Sphagnum fuscum, S. teres and S. fimbriatum populations at early successional stages in fens (In: The Future of Polish Mires, Eds: L. Wołejko, J. Jasnowska) – Soc. Scient. Stetinensis, Agricult. Univ. Szczecin, pp. 61–66.
  • 11. Forysiak J., Michalska-Hejduk D. 2004 - Changes of the Wilczków peat-bog under long-term anthropopressure (In: The Future of Polish Mires, Eds: L. Wołejko, J. Jasnowska) – Soc. Scient. Stetinensis, Agricult. Univ. Szczecin, pp. 213–218.
  • 12. Frankl R., Schmeidl, H. 2000 – Vegetation change in a South German raised bog: ecosystem engineering by plant species, vegetation switch or ecosystem level feedback mechanisms? – Flora, 195: 267–276.
  • 13. Gorham E. 1991 – Northern peatlands: role in the carbon cycle and probable responses to climatic warming – Ecol. Appl. 1: 182–195.
  • 14. Gunnarsson U., Malmer N., Rydin H. 2002 – Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study - Ecography, 25: 685–704.
  • 15. Gunnarsson U., Rydin H. 1998 – Demography and recruitment of Scots pine on raised bogs in eastern Sweden and relationships to microhabitat differentiation – Wetlands, 18: 133–141.
  • 16. Hayward P.M., Clymo R.S. 1983 – The growth of Sphagnum: experiments on, and simulation of, some effects of light flux and water-table depth – J. Ecol. 71: 845–863.
  • 17. Heijmans M.M.P.D., Klees H., Berendse F. 2002 – Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition – Oikos, 97: 415–425.
  • 18. Herbich J., Herbichowa M. 2002 – Szata roślinna torfowisk Polski [Peatland vegetation of Poland] (In: Torfowiska i torf [Peatlands and Peat] Ed: P. Ilnicki) – Wyd. Akad. Roln. im. A. Cieszkowskiego w Poznaniu, pp. 179–191 (in Polish).
  • 19. Herbichowa M. 1976 – Zanikanie gatunków na przykładzie atlantyckich torfowisk Pobrzeża Kaszubskiego [Extinction of species exemplified by peat bogs of atlantic type in Kaszuby Coastal Region] – Phytocoenosis, 5: 247–254 (in Polish).
  • 20. Herbichowa M. 1998 – Ekologiczne studium rozwoju torfowisk wysokich właściwych na przykładzie wybranych obiektów z środkowej części Pobrzeża Bałtyckiego [Ecological study of development of the Baltic-type raised bogs exemplified by selected objects in the middle part of Baltic Sea-Coast] – Wyd. Uniw. Gdańskiego, 119 pp. (in Polish).
  • 21. Hill M.O., Gauch H.G. 1980 – Detrended Correspondence Analysis: an improved ordination technique – Vegetatio, 42: 47–58.
  • 22. Hogg P., Squires P., Fitter A.H. 1995 – Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire – Biol. Conserv. 71: 143–153.
  • 23. Jasnowski M. 1972 – Rozmiary i kierunki przekształceń szaty roślinnej torfowisk [Extend and directions of changes in mire plant cover] – Phytocoenosis, 1: 193–209 (in Polish).
  • 24. Jones C.G., Lawton J.H., Shachak M. 1994 – Organisms as ecosystem engineers – Oikos, 69: 373–386.
  • 25. Kucharski L., Michalska-Hejduk D. 2000 – Stan a ochrona roślinności nieleśnej w rezerwatach województwa łódzkiego [Protection of non-forest plant communities in the Łódź voivodeship reserves] – Parki Nar. Rez. Przyr. 19: 19–29 (in Polish).
  • 26. Kucharski L., Michalska-Hejduk D., Kołodziejek J. 2004 – Transitional and raised bogs in central Poland–condition and protection (In: The Future of Polish Mires, Eds: L., Wołejko, J. Jasnowska) – Soc. Scient. Stetinensis, Agricult. Univ. Szczecin, pp. 113–117.
  • 27. Laine J., Vasander H., Laiho R. 1995 – Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland – J. Appl. Ecol. 32: 785–802.
  • 28. Limpens J., Berendse F., Klees H. 2003 – N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation – New Phytol. 157: 339–347.
  • 29. Limpens J., Berendse F., Klees H. 2004 - How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs – Ecosystems, 7: 793–804.
  • 30. Malmer N. 1998 – Våt- och torvmarkers känslighet för klimat förändringar. – Kungl. SkogsLantbruksakademins Tidsk – 138: 97–107.
  • 31. Malmer N., Albinsson C., Svensson B.M., Wallén B. 2003 – Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation – Oikos, 100: 469–482.
  • 32. Malmer N., Svensson B.M., Wallén B. 1994 – Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems – Folia Geobot. Phytotax. 29: 483–496.
  • 33. Malmer N., Wallén B. 1993 – Accumulation and release of organic matter in ombrotrophic bog hummocks: processes and regional variation – Ecography, 16: 193–211.
  • 34. Malmer N., Wallén B. 1999 – The dynamics of peat accumulation on bogs: mass balance of hummocks and hollows and its variation throughout a millennium – Ecography, 22: 736–750.
  • 35. Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M. 2002 – Flowering Plants and Pteridophytes of Poland. A Checklist. Ser. Biodiversity of Poland I. – W. Szafer Inst. Botany Polish Academy of Sciences, Kraków, 442 pp.
  • 36. Murray K.J., Tenhunen J.D., Kummerow J. 1989 – Limitations on Sphagnum growth and net primary production in the foothills of the Philip Smith Mountains, Alaska – Oecologia, 80: 256–262.
  • 37. Ohlson M., Økland R.H., Nordbakken J.-F., Dahlberg B. 2001 – Fatal interactions between Scots pine and Sphagnum mosses in bog ecosystems – Oikos, 94: 425–432.
  • 38. Ochyra R., Żarnowiec J., Bednarek-Ochyra H. 2003 – Census Catalogue of Polish Mosses – W. Szafer Inst. Botany Polish Academy of Sciences, Kraków, 372 pp.
  • 39. Risager M. 1998 – Impacts of nitrogen of Sphagnum dominated bogs with emphasis on critical load assessment – Ph.D. thesis, University of Copenhagen.
  • 40. Rydin H. 1993 – Mechanisms of interactions among Sphagnum species along water-levelgradients – Adv. Bryol. 5: 153–185.
  • 41. Rydin H. 1997 – Competition among bryophytes – Adv. Bryol. 6: 135–168.
  • 42. Sugier P. 2002 – Dynamika roślinności wodnej i przybrzeżnej w północno-zachodniej części Pojezierza Łęczyńsko-Włodawskiego [Dynamics of Aquatic and Riparian Vegetation in the North-Western Part of the ŁęcznaWłodawa Lakeland] – Ph.D. thesis, Faculty of Biology and Earth Sciences, Maria CurieSkłodowska University, Lublin, 106 pp. (in Polish).
  • 43. Sugier P., Czarnecka B. 2004 – Transformations of aquatic and mire vegetation in catchment areas of selected lakes in the ŁęcznaWłodawa Lakeland (In: The Future of Polish Mires, Eds: L. Wołejko, J. Jasnowska) – Soc. Scient. Stetinensis, Agricult. Univ. Szczecin, pp. 137–142.
  • 44. Svensson B.M. 1995 – Competition between Sphagnum fuscum and Drosera rotundifolia: a case of ecosystem engeneering? – Oikos, 74: 205–212.
  • 45. Tomassen H.B.M., Smolders A.J.P., Lamers L.P.M. Roelofs J.G.M. 2003 – Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition – J. Ecol. 91: 357–370.
  • 46. Van Breemen N. 1995 – How Sphagnum bogs down other plants – Trends Ecol. Evol. 10: 270–275.
  • 47. Wieder R .K. 2001 – Past, present, and future peatland carbon balance: an empirical model based on 210 Pb-dated cores – Ecol. Appl. 11: 327–342.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3179-2332
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.