Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 58, nr 2 | 211-219
Tytuł artykułu

The impact of UV radiation on metabolism of neustonic and planktonic bacteria in eutrophic lake

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The range of solar radiation reaching the air-water inter-phase, medium wave UV radiation, i.e. UVB 290-320 nm and UVA 320-400 nm, is of the highest biological importance due to its harmful effects. Radiation within this range causes DNA damage (lethal effect) or limits the growth of organisms by inhibiting enzyme synthesis, reducing active transport, or by inducing mutations. The studies were carried out in 2007 based on samples water collected from surface microlayer (SM) (up to 150 [mu]m) and subsurface water (SSW) (25 cm) of pelagic zone of eutrophic lake. The representative collection of bacterial strains was isolated from collected samples. The following are measured: the DNA and cellular protein synthesis activity, respiration activity of the bacteria and activity of hydrolytic enzymes in control cultures, subjected to UVB radiation (applied dose 100 mW cm[^-2]) and with and without humic substances (HS) (final concentration 100 mg L[^-1]) playing role of compounds potentially protective from UV radiation. UVB irradiation had the strongest inhibiting impact on production of DNA in bacterial cells (12-23% of that in non-irradiated samples). UVB radiation also inhibits the synthesis of cellular protein (27-43% of that in non-irradiated samples) and bacterial respiration activity (44-48%). UVB radiation had by far the lowest impact on the activity of hydrolytic enzymes. HS may function as a protective agent against UV radiation only in DNA synthesis. No significant differences in response to UVB were found between planktonic and neustonic bacteria.
Wydawca

Rocznik
Strony
211-219
Opis fizyczny
Bibliogr. 37 poz.,Rys., tab.,
Twórcy
autor
  • Department of Environmental Microbiology and Biotechnology, Institute of Ecology and Environment Protection, Nicholaus Copernicus Uniyersity, Gagarina 9, 87-100 Toruń, Poland, wodkow@umk.pl
Bibliografia
  • 1. Agogué H., Joux F., Obernosterer I., Lebaron P. 2005 – Resistance of Marine Bacterioneuston to Solar Radiation – Appl. Environ. Microbiol. 71: 5282–5289.
  • 2. Arrieta, J.M., Weinbauer, M.G., and Herndl G.J. 2000 – Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria - Appl. Environ. Microbiol. 66: 1468–1473.
  • 3. Benner R., Biddanda B. 1998 – Photochemical transformation of surface and deep marine dissolved organic matter: effects on bacterial growth – Limnol. Ecol. 43: 1373–1378.
  • 4. Boavida M.J., Wetzel R.G. 1998 – Inhibition of phosphatase activity by dissolved humic substances and hydrolytic reactivation by natural ultraviolet light – Freshwater Biol. 40: 285–293.
  • 5. Bradford M.M. 1976 – A rapid and sensitive method for the quantitation of microgramm quantities of protein utilizing the principle of protein-dye-binding – Analit. Biochem. 72: 248–258.
  • 6. Chróst R.J., Faust M.A. 1999 – Consequences of solar radiation on bacterial secondary production and growth rates in subtropical coastal water (Atlantic Coral Reef off Belize, Central America) – Aquatic Microb. Ecol. 20: 39–48.
  • 7. Cockell C.S. 2000 – Ultraviolet radiation and the photobiology of earth’s early oceans – Origins Life Evol. Biosph. 30: 467 – 499.
  • 8. Davidson A.T. 1998 – The impact of UVB radiation on marine plankton – Mutation Res. 422: 119–129.
  • 9. Denwart C.M.T., Edling H. Tranvik L.J. 1999 – Effects of solar radiation on bacterial and fungal density on aquatic plant detritus – Freshwater Biol. – 41: 575–582.
  • 10. Fuhrman J.A., Azam F. 1982 – Thymidine Incorporation as a Measure of Heterotrophic Bacterioplankton Production in Marine Surface Waters: Evaluation and Field Results – Mar. Biol. 66: 109–120.
  • 11. Garabetian F. 1991 – 14C-glucose uptake and 14C-CO2 production in surface microlayer and surface-water samples: influence of UV and visible radiation – Mar. Ecol. Prog. Ser. 77: 21–26.
  • 12. Garrett W.P. 1965 – Collection of slick-forming materials from the sea surface – Limnol. Oceanogr. 10: 602–605.
  • 13. Gillian A., Duncan H. 2001 – Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils - Soil Biol. Biochem. 33: 943–951.
  • 14. Goosen N., Moolenaar G.F. 2008 – Repair of UV damage in bacteria – DNA Repair, 7: 353–379.
  • 15. Górniak A. 2004 – Substancje humusowe w ekosystemach wód słodkich [Humic substances in the freshwater ecosystems] (In: Metody badań substancji humusowych ekosystemów wodnych i lądowych [Methods for investigation of humic substances in aquatic and terrestial ecosystems] Ed: D. Gołębiewska) - Wydawnictwo AR, Szczecin, pp. 81–91. (in Polish with English summary).
  • 16. Häder D.P., Kumar H.D., Smith R.C., Worrest R.C. 1998 – Effects on aquatic ecosystems – J. Photochem. Photobiol. 46: 53–68.
  • 17. Herndl G.J., Brugger A., Hager S., Kaiser E., Obernosterer I., Reitner B. Slezak D. 1997 – Role of utraviolet-B radiation on bacterioplankton and availability of dissolved organic matter – Vegetatio, 128: 43–51.
  • 18. Herndl G.J., Muller-Niklas G., Frick J. 1993 – Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean – Nature, 361: 717–719.
  • 19. Hessen D.O., Gjessing E.T., Knulst J., Fjeld E. 1997 – TOC fluctuations in humic lake as related to catchment acidification, season and climate – Biogeochemistry, 36: 139–151.
  • 20. Hillbricht-Ilkowska A., Kostrzewska-Szlakowska I. 2004 – Surface microlayer in lakes of different trophic status: nutrients concentration and accumulation – Pol. J. Ecol. 52: 461–478.
  • 21. Jańczak J. 1997 – Atlas jezior Polski [The Polish’s lakes geographical atlas] – Bogucki Wydawnictwo Naukowe, Poznań, 240 pp.
  • 22. Jorgensen N.O.G., Tranvik L., Edling H., Graneli W., Lidell M. 1998 – Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake water – FEMS Microbiol. Ecol. 25: 217–227.
  • 23. Kaiser E., Herndl G.J. 1997 – Rapid recovery of marine bacterioplankton activity after inhibition by UV radiation in coastal waters – Appl. Environ. Microbiol. 10: 4026–4031.
  • 24. Kirchman D.L., K’nees E., Hodson R.E. 1985 – Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems – Appl. Environ. Microbiol. 3: 599–607.
  • 25. Kirchman D.L., Newell S.Y., Hodson R.E. 1989 – Incorporation versus biosynthesis of leucine: implications for measuring rates of protein synthesis and biomass production by bacteria in marine systems – Mar. Ecol. Prog. Ser. 32: 47–57.
  • 26. Scully N.M, Cooper W.J., Tranvik L.J. 2003 – Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter – FEMS Microbiol. Ecol. 46: 353–357.
  • 27. Sieburth J. 1983 – Microbiological and organic-chemical processes in surface and mixed layers (In: Air-Sea Exchange of Gases and Particles, Eds: P.S. Liss, W.G.N. Slinn, D. Reidel) - Hindgham, pp: 121–172.
  • 28. Sommaruga R. 2001 – The role of solar UV radiation in the ecology of alpine lakes – J. Photochem. Photobiol. B: Biol. 62: 35–42.
  • 29. Sommaruga R., Obernosterer I., Herndl G.J., Psenner R. 1997 – Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton - Appl. Environ. Microbiol. 63: 4178–4184.
  • 30. Sommaruga R., Psenner R., Schafferer E., Koinig K.A., Sommaruga-Wögrath S. 1999 – Dissolved organic carbon concentration and phytoplankton biomass in highmountain lakes of the Austrian Alps: potential effects of climatic warming on UV underwater attenuation – Arctic Antarc. Alp. Res. 31: 247–254.
  • 31. Vosjan J.H. Zdanowski M.K. 2001 – Interspecific variability in UV-B sensitivity of Antarctic bacteria – Circumpolar J. 16: 1–15.
  • 32. Walczak M. 2008a – Impact of solar radiation, including UV, on the activity of intra- and extracellular bacterial enzymes from the surface microlayer – Pol. J. Natur. Sci. 23: 415–427.
  • 33. Walczak M. 2008b – Day-to-night activity of bacteria in the surface microlayer of eutrophic lake – Pol. J. Ecol. 56: 379–389.
  • 34. Williams P.M., Carlucci A.F., Henrichs S.M., Van Vleet E.S., Horrigan S.G., Reid F.M.H., Robertson K.J. 1986 – Chemical and microbiological studies of seasurface films in the southern Gulf of California and off the west coast of Baja California - Mar. Chem. 19: 17–98.
  • 35. Winter C., Moeseneder M.M., Herndl G.J. 2001 – Impact of UV radiation on bacterioplankton community composition – Appl. Environ. Microbiol. 67: 665–672.
  • 36. Wissenschaftlich-technische Werkstätten (WTW) 1998 – Applikationsbericht BSB 997 230: Respirometrische BSB5-Bestimmung von häuslichem Abwasser mit dem OxiTop® Control - oder OxiTop®-Messystem - Weilheim.
  • 37. Zaitsev Y.P. 1971 – Marine Neustonology – Israel Prog. Scientific Tranl. Jerusalem, 207 pp.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2912-1482
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.