Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | R. 105, z. 4-M | 43-59
Tytuł artykułu

Niekonserwatywne problemy stateczności płyt pierścieniowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Non-conservative stability problems of annular plater
Języki publikacji
PL
Abstrakty
PL
W niniejszym artykule: 1 - zbadano zależności krzywych charakterystycznych (tzn. zależności części rzeczywistej i części urojonej zespolonej częstości drgań od obciążenia) od współczynnika śledzenia dla pierścieniowej płyty o stałej grubości, ściskanej niekonserwatywnymi siłami równomiernie rozłożonymi na brzegu zewnętrznym płyty, w warunkach nieliniowego pełzania; 2 - wyznaczono zależności obciążenia krytycznego od współczynnika śledzenia; 3 - zbadano wpływ nieliniowych własności reologicznych materiału płyty na jej stateczność i drgania. Aby zastosować kinetyczne kryterium stateczności, analizowano małe, liniowe drgania ukła-du, nałożone na stan przedkrytyczny (stan membranowy) płyty. Obciążenie krytyczne okreś-lano na podstawie kryterium Lapunowa.
EN
In the paper the following problems have been considered: 1 - the dependence of the characteristic curves (i.e. real and imaginary parts of complex frequencies of vibration versus the compressive force) on the tangency coefficient for an annular plate of constant thickness, compressed by uniformly distributed non-conservative loadings; 2 - the relationship between the critical loading and the tangency coefficient; 3 - the influence of non-linear rheological properties of material on vibration and stability of the plate. In order to use the kinetic criterion of stability, the small, linear vibrations superposed on the pre-critical membrane state have been analyzed. The critical loading has been determined on the basis of Lyapunov criterion.
Wydawca

Rocznik
Strony
43-59
Opis fizyczny
Bibliogr. 39 poz.,Wykr., wz.,
Twórcy
autor
  • Instytut Fizyki, Wydział Fizyki, Matematyki i Informatyki Stosowanej, Politechnika Krakowska
Bibliografia
  • [1] Beck M., Die Knicklast des einseitig eingespannten tangential gedrückten Stabes, ZAMM 3, 1952, 225-228.
  • [2] Błachut J., Gajewski A., A unified approach to optimal design of columns, Solid Mechanics Archives 5(4), 1980, 363-413.
  • [3] Bogacz R., Janiszewski R., Analysis and synthesis of column under follower forces from the point of view of stability, Adv. In Mechanics (Uspekhi mekhaniki) 8(3), 1987, 3-52 (in Russian).
  • [4] Claudon J.L., Characteristic curves and optimum design of two structures subjected to circulatory loads, Journal de Mecanique 14(3), 1975, 531-543.
  • [5] Davenport C.C., Correlation of creep and relaxation properties of copper, J. Appl. Mech. 5(2), 1938, A56.
  • [6] Elishakoff I., Controversy Associated With the So-Called „Follower Forces”, Critical Overview, Applied Mechanics Reviews 58, 2005, 117-142.
  • [7] Gajewski A., On the destabilizing effect in a non-conservative system with slight internal and external damping, Proceedings of Vibration Problems 13(2), 1972, 187-198.
  • [8] Gajewski A., Optimization of a column compressed by non-conservative force in non-linear creep conditions, [in:] W. Gutkowski, Z. Mróz (eds.), Proc. Second World Congress of „Structural and Multidisciplinary Optimization”, May 26–30 Zakopane 1997, 737-742.
  • [9] Gajewski A., Vibrations and stability of a non-conservatively compressed prismatic column under nonlinear creep conditions, Journal of Theoretical and Applied Mechanics 38(2), 2000, 259-270.
  • [10] Gajewski A., Vibration and stability of a non-prismatic column compressed by non-conservative forces in non-linear creep conditions, Journal of Sound and Vibration 248(2), 2001, 315-327.
  • [11] Gajewski A., Vibration and stability of annular plates in non-linear creep conditions, Journal of Sound and Vibration 249(3), 2002, 447-463.
  • [12] Gajewski A., Certain stability problems of annular plates compressed by non-conservative forces, The Fifth EUROMECH Solid Mechanics Conference, ESMC-5, Book of Abstracts, (Chairmen: E.C.Aifantis), Aristotle University of Thessaloniki, August 17–22, Thessaloniki 2003,Greece, 160-161.
  • [13] Gajewski A., Cupiał P., Optimal structural design of an annular plate compressed by non-conservative forces, Int. J. Solids Structures 29(10), 1992, 1283-1292.
  • [14] Gajewski A., Życzkowski M., Wpływ jednoczesnego niejednorodnego tarcia wewnętrznego i zewnętrznego na stateczność układów niekonserwatywnych, Mech. Teor. i Stos. 10(1), 1972, 121-136.
  • [15] Gajewski A., Życzkowski M., Optimal structural design under stability constraints, Kluwer Academic Publishers, Dordrecht 1988.
  • [16] Grinev V.B., Filippov A.P., Optimal design of circular plates in stability problems, Stroit. Mech. i Raschot Sooruzheniy 2, 1977, 16-20 (in Russian).
  • [17] Hanaoka M., Washizu K., Optimum design of Beck’s column, Computers and Structures 11(6), 1980, 473-480.
  • [18] Irie T., Yammada G., Kaneko Y., Vibration and stability of a non-uniform annular plate subjected to a follower force, Journal of Sound and Vibration 73(2), 1980, 261-269.
  • [19] Kordas Z., Życzkowski M., On the loss of stability of a rod under a super-tangential force, Arch. Mech. Stos. 15(1), 1963, 7-31.
  • [20] Langthjem M.A., Sugiyama Y., Optimum shape design against flutter of a cantilevered column with an end-mass of finite size subjected to a non-conservative load, Journal of Sound and Vibration 226 (1), 1999, 1-23.
  • [21] Langthjem M.A., Sugiyama Y., Optimum design of cantilevered columns under the combined action of conservative and nonconservative loads. Part I: The undamped case, Computers &Structures 74, 2000, 385-398.
  • [22] Langthjem M.A., Sugiyama Y., Optimum design of cantilevered columns under the combined action of conservative and nonconservative loads. Part II: The damped case, Computers &Structures 74, 2000, 399-408.
  • [23] Langthjem M.A., Sugiyama Y., Kobayashi M., Yutani H., Experimental Verification of Optimization of Cantilevered Columns Subjected to a Rocket Thrust, 4th EUROMECH Solid Mechanics Conference, June 26–30, 2000, Book of abstracts II, Metz, France, 662.
  • [24] Nikolai E.L., On the stability of equilibrium of a compressed and twisted column (in Russian), Trudy Leningr. Politekhn. Inst. 31, 1928, 201. Również [w:] Trudy po mekhanike (Prace zebrane), Moskwa 1955, 357-387.
  • [25] Przybylski J., Drgania i stateczność dwuczłonowych układów prętowych wstępnie sprężonych przy obciążeniach niezachowawczych, Monografia Nr 92, Politechnika Częstochowska, Częstochowa 2002.
  • [26] Rabotnov Yu.N., Creep of structural elements, Nauka, Moskva 1966 (in Russian).
  • [27] Rabotnov Yu.N., Shesterikov S.A., Creep stability of columns and plates, Prikl. Mat. Mekch. 21(3), 1957, 406-412 (Russian version), J. Mech. Phys. Solids 6, 1957, 27-34 (English version).
  • [28] Ringertz U.T., On the design of Beck's column, Structural Optimization 8, 1994, 120-124.
  • [29] Sugiyama Y., Katayama K., Kinoi S., Flutter of cantilevered column under rocket thrust, Journal of Aerospace Engineering, ASCE 8, 1995, 9-15.
  • [30] Sugiyama Y., Katayama K., Kiriyama K., Ryu B.-J., Experimental verification of dynamic stability of vertical cantilevered columns subjected to a subtangential force, Journal of Sound and Vibration 236(2), 2000, 193-207.
  • [31] Sugiyama Y., Langthjem M.A., Ryu B.-J., Realistic follower forces. Letters to the Editor, Journal of Sound and Vibration 225(4), 1999, 779-782.
  • [32] Wróblewski A., Optimal design of circular plates against creep buckling, Eng. Optim. 20, 1992, 111-128.
  • [33] Wróblewski A., Życzkowski M., On multimodal optimization of circular arches against plane and spatial creep buckling, Structural Optimization 1(4), 1989, 227-234.
  • [34] Yagn Yu.I., Parshin L.K., Experimental verification of stability of a column compressed by a follower force, Dokłady AN SSSR, 167(1),1966, 49-50 (in Russian).
  • [35] Zhukov A.M., Rabotnov Yu.N., Churikov F.S., Experimental verification of some theories of creep, Inzh. Sbornik 17, 1953, 163-170 (in Russian).
  • [36] Zoriy L.M., Leonov Yu.Ya., Influence of damping on the stability of non-conservative system, Problems of Design and Strength in Machine Building 7(7), 1961, 127-136 (in Russian).
  • [37] Życzkowski M., Optimal structural design under creep conditions, Appl. Mech. Rev. 49(9), 1996, 433-446.
  • [38] Życzkowski M., Gajewski A., Optimal structural design in non-conservative problems of elastic stability, IUTAM Symposium on „Instability of Continuous Systems”, (Ed. H.H.E.Leipholz), Herrenalb 1969, Springer 1971, 295-301.
  • [39] Życzkowski M., Kowalski A., Nonconservative stability problems for columns subject to nonlinear creep, Proc. EUROMECH Colloquium 190: „Dynamical Stability of Inelastic Structures”, Technische Universität Hamburg-Harburg Oct. 1–4, 1984, 109-111.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2325-8934
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.