Czasopismo
2008
|
Vol. 33, No. 2
|
243-260
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Chemical compositions and basic properties of smart materials (ferroics, biferroics, multiferroics) are introduced in this paper. Single phase and composite ferroelectromagnetics are characterized in detail. Multiferroic ferroelectromagnetics are materials which are both ferromagnetic/ferrimagnetic/antiferromagnetic and ferroelectric/ferrielectric, antiferrolectric in the same phase. As a result they have a spontaneous magnetization which can be switched by an applied magnetic field, a spontaneous polarization which can be switched by an applied electric field, and often there is some coupling between those fields. The physical mechanisms of the coupling process were analyzed. In the case of the ferroelectromagnetics in general the transitions method d electrons, which are essential for magnetism, reduce the tendency for off-center ferroelectric distortion. Such materials have all the potential applications of both their parent ferroelectric and ferromagnetic materials.
Czasopismo
Rocznik
Tom
Strony
243-260
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
autor
- Silesian University, Faculty of Computer and Materials Science, Department of Materials Science, Śnieżna 2, 41-200 Sosnowiec, Poland, surowiak@us.edu.pl
Bibliografia
- [1] WADHAWAN V. K., Introduction to ferroic materials, Gordon and Breach, UK 2000.
- [2] GROSSMAN B., Fiber optic smart structures and skins II, Proc. SPIE, 1170, 123–129 (1989).
- [3] WADHAWAN V. K., Ferroic materials: a primer, 7, 6, 15–24 (2002).
- [4] RAVEZ J., Ferroelectricity in solid state chemistry, C.R. Acad. Sci. Paris, Series II c, Chimie/Chemistry, 3, 267–283 (2000).
- [5] HILL N. A., FILIPPETTI A., Why are there any magnetic ferroelectrics, J. of Magnetism and Magnetic Materials, 242–245, 976–979 (2002).
- [6] BAN Z.-G., ALPAY S. P., MANTESE J. V., Fundamentals of graded ferroic materials and devices, Phys. Rev. B., 67, 184104–1–184104–6 (2003).
- [7] HILL N. A., First principle study of multiferroic magnetoelectric manganites, Annual Rev. Mater. Res., 32, 1–11 (2002).
- [8] SMOLENSKII G. A., Fizika segnetoelektrikov, Nauka, Leningrad 1978.
- [9] RYU J., PRIYA S., UCHINO K., KIM H.-E., Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials, J. Electroceram., 8, 107–119 (2002).
- [10] VENEVCEV YU. N., GAGULIN V. V., LUBIMOV V. NO, Segnetomagnitnye veshchestva, [in:] Segnetoelektriki, Filipiev V. C. [Ed.], pp. 21–31, RGU, Rostov-na-Donu 1983.
- [11] FESENKO E. G., Semeystvo perovskita i segnetoelektrichestvo, Atomizdat, Moskva 1972.
- [12] IVANOV S. A., TELLGREN R., RUNDLOF H., Thomas N.W., Ananta S., Investigation of the structure of the relaxor ferroelectric Pb(Fe1=2Nb1=2)O3 by neutron powder diffraction, J. Phys.: Condensed. Matter., 12, 2393–2400 (2000).
- [13] GAO X., XUE J., WANG J., Sequential combination of constituent oxides in the synthesis of Pb(Fe1=2Nb1=2)O3 by mechanical activation, J. Am Ceram. Soc., 85, 3, 565–572 (2002).
- [14] RAYMOND O., FONT R., SUÁREZ N., PORTELLES J., SIQUEIROS J.M., Effects of two kinds of FeNbO4 precursors in the obtainment and dielectric properties of PFN ceramics, Ferroelectrics, 294, 141–154 (2003).
- [15] WANG J. T., MBONYE M. K., ZHANG C., Dielectric, piezoelectric and magnetic properties of ferroelectromagnetic Pb(Fe1=2Nb2=3)O3 (PFN) ceramics, Intern. J. of Modern Physics B, 17, 18–20, 3732–3737 (2003).
- [16] MAJUMDER S. B., BHATTACHARYYA S., KATIYAR R. S., Dielectric and magnetic properties of sol-gel-derived lead iron niobate ceramics, J. Appl. Phys., 99, 108–116 (2006)
- [17] SRINIVAS A., KUMAR M.M., SURYANARANYANA S. V., BHIMASANKARAM T., Investigation of dielectric and magnetic nature of Bi4Fe3Ti3O21, Mater. Res. Bull., 34, 6, 989–996 (1999).
- [18] KIM J. S., CHEON C. J., JANG P.W., CHOI Y. N., LEE C. H., Ferroelectric and ferromagnetic properties of 0.2 BiFeO3 – 0.2 RFeO3 – 0.6 ATiO3 (R = Pr, Nd and A = Ba, Pb) and 0.8 BiFeO3 – 0.2 BaTiO3, J. Europ. Ceram. Soc., 24, 1551–1555 (2004).
- [19] XU Y., Ferroelectric materials and their applications, North – Holland, Amsterdam 1991.
- [20] LINES M. E., GLASS A.M., Principles and application of ferroelectrics and related materials, Clarendon Press, Oxford 1977.
- [21] KUWAHARA H., NODA K., NAGAYAMA J., NAKAMURA S., Magnetic field and external pressure control of ferroelectricity in multiferroic manganites, Physica B: Condensed Matter., 359–361, 1279–1281 (2005).
- [22] AIZU K., J. Phys. Soc. Jap., 20, 959 (1965).
- [23] AIZU K., Phys. Rev., 146, 423 (1966).
- [24] SHUVALOV, J. Phys. Soc., Jap. 285, 38 (1970).
- [25] BLINC R., ŽEKS B., Soft modes in ferroelectrics and antiferroelectrics, Elsevier, New York 1974.
- [26] KEVE E. T., ABRAHAMS S. C., Ferroelectrics, 1, 243 (1970).
- [27] ZHENG H., Multiferroic BaTiO3 – CoFe2O4 nanostructures, Science, 303, 1, 661–663 (2004).
- [28] LAWVER A., Thunder: A new frontier in research for smart materials, Smart Mater. Bull., 8, 5–9 (2001).
- [29] TABATA H., UEDA K., KAWAI T., Construction of ferroelectric and / or ferromagnetic superlattices by laser MBE and their physical properties, Mater, Sci. and Engin., B56, 140–146 (1998).
- [30] PRIETO J. L., AROCA C., SÁNCHEZ P., LÓPEZ E., SÁNCHEZ M. C., Current effects in magnetostrictive piezoelectric sensors, J. of Magnetism and Magnetic Materials, 174, 289–294 (1997).
- [31] PRIETO J. L., AROCA C., LÓPEZ E., SÁNCHEZ M. C., SÁNCHEZ P., Magnetostrictive – piezoelectric magnetic sensor with current excitation, J. of Magnetism and Magnetic Materials, 215–216, 756–758 (2000).
- [32] UENO T., QIU J., TANI J., Device of magnetostrictive and piezoelectric materials for magnetic force control, J. of Magnetism and Magnetic Materials, 258–259, 49–492 (2003).
- [33] LIU Y. X., WAN J. G., LIU J.-M., NAN C.W., Effect of magnetic bias field on magnetoelectric coupling in magnetoelectric composites, J. Appl. Phys., 94, 8, 5118–5122 (2003).
- [34] ASCHER E., RIEDER H., SCHMID H., STOSSEL H., Some properties of ferromagnetic nickel – iodine boracity Ni3B7O13J, J. Appl. Phys., 37 1404–1405 (1966).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BATA-0002-0024