Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 60, nr 6 | 509-526
Tytuł artykułu

Reduced order modelling of a flow around an airfoil with a changing angle of attack

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Polish Conference of Fluid Mechanics (18 ; 21-25.09.2008 ; Jastrzębia Góra, Poland)
Języki publikacji
EN
Abstrakty
EN
Model reduction based on Galerkin projection is a key technique used in feedback flow control. It significantly accelerates the flow computations, and thus it can be suitable for the aeroelastic simulations or, generally, in the flow analysis of changing configurations and boundaries. The present paper concerns the reduced-order Galerkin modelling of 2D flow around NACA-0012 airfoil, with angle of attack changing from alfa=30 to alfa=45. It emphasizes the requirements of simplicity and accuracy of reduced order models (ROMs) used in control applications and discusses possible mode bases. Finally, it describes the constructed model, based on the modes resulting from Proper Orthogonal Decomposition (POD) and the novel technique of continuous mode interpolation. This method allows smooth transition between different operating and boundary conditions and allows the design of least-dimensional Galerkin model for control purposes.
Słowa kluczowe
Wydawca

Rocznik
Strony
509-526
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
autor
autor
Bibliografia
  • 1. P.,J, STRYKOWSKI, K.R. SREENIVASAN, On the formation and suppression of vortex ''shedding' at low Reynolds numbers, J. Fluid Mech., 218, 71-107, 1990.
  • 2. D.M. BUSHNELL, J.N. HEFNER, Viscous drag reduction in boundary layers, [in:] Progress in Aeronautics and Astronautics, 123, AIAA, Washington, D.C.
  • 3. J. GERHARD, M. PASTOOR, R. KING, B.R. NOACK, A. DILLMANN, M. MORZYŃSKI and G. TADMOR, Model-based control of vortex shedding using low-dimensional Galerkin models, [in:] 33rd AIAA Fluids Conference and Exhibits, Orlando, Florida, U.S.A., June 23-26, Paper 2003-4262.
  • 4. B.R. NOACK, K. AFANASIEV, M. MORZYŃSKI, G. TADMOR F. THIELE, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech. 497, 335-363, 2003.
  • 5. M. MORZYŃSKI, W. STANKIEWICZ, B.R. NOACK, F. THIELE, G. TADMOR, Generalized mean-field model with continuous mode interpolation for flow control, [in:] 3rd AIAA Flow Control Conference, San Francisco, Ca, USA, 58 June. Invited AIAA-Paper 2006-3488.
  • 6. M. MORZYŃSKI, W. STANKIEWICZ, B.R. NOACK, R. KING, F. THIELE, G. TADMOR, Continuous Mode Interpolation for Control-Oriented Models of Fluid Flow, [in:] Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Volume 95: Active Flow Control, R. KING [Ed.], Springer, Berlin, 260-278.
  • 7. M. MORZYŃSKI, Numerical solution of Navier Stokes equations by the finite element method, [in:] Proceedings of SYMKOM 87, Compressor and Turbine Stage Flow Path Theory and Experiment, 119-128, 1987.
  • 8. W. STANKIEWICZ, Algorithm for deformation of three-dimensional flow grids [in Polish], Zeszyty Naukowe Politechniki Poznańskiej, Maszyny Robocze i Transport. 59, 143-148, 2005.
  • 9. B.H. NOACK. P. PAPAS, P.A. MONKEWlTZ. Low-dimensioned Galerkm modd of a laminar shear-layer, Technical Report 2002-01, Laboratoire de Mécanique des Fluides, Departement de Genie Mécanique, École Polytechnique Fédérale de Lausanne. Switzerland. 2002.
  • 10. B.H. NOACK. P. PAPAS. P.A. MONKEWITZ, The need for a pressure-term representation in empirical Galerkin models of incompressible shear-flows, J. Fluid Meeh.. 523. 339-365, 2005.
  • 11. F.H. BUSSE, Numerical analysis of secondary and, tertiary states of fluid flow and their stability properties, Appl. Sci. lies., 48, 341-351, 1991.
  • 12. R.W. PANTON, Incompressible Flow, John Wiley & Sons, New York 1984.
  • 13. H. PEYRET, Spectral Methods for Incompressible Viscous Flow, Springer. New York 2002.
  • 14. M. FARGE, K. SCHNEIDER, N. KEVLAHAN, Non-Gausswnity and Coherent Vortex Simulation for two-dimensional turbulence using an adaptive orthonormal wavelet basis. Pliys. Fluids, 11, 8, 2187 2201, 1999.
  • 15. B.R.. NOAK, Niederdimensionale Galerkin-Modelle für laminare and transitionelle Scher-strömungen (transl,: Low-dimensional Galerkin models of laminar and transitional shear-flow). Technical report, Habilitation thesis, 2005.
  • 16. B. RUMMLER, Zur Lösung der instationären inkompressiblen Navier Stokesschen Gle-ichungen in speziellen Gebieten, (transl.: On the solution of the incompressible Navier Stokes equations in some domains), Technical Report Habilitationsschrift, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, 2000.
  • 17. L. BOBERG, U. BROSA, Onset, of Turbulence in a Pipe, Z. Naturforsch., 43a, 697-726. 1988.
  • 18. P.F. BATCHO, Global Spectral Methods for the Solution of the Incompressible Navier-Stokes Equations in Complex Geometries: The Generalized Stokes Eigensystem. PhD thesis, Princeton University, 1994.
  • 19. K. AFANASIEV, Stabilitätsanalyse, niedrigdimensionale Modellierung und optimale Kontrolle, der Krieiszylinderumströmung (transl.: Stabilily analysis. low-dimensional modelling. and optimal control of the flow around a circular cylinder), PhD thesis. Fakultät Maschinenwesen, Technische Universität Dresden, 2003.
  • 20. M. MORZYŃSKI, K. AFANASIEV, F. THIELE, Solution of the eigenvalue problems resulting from global non-parallel Jlow stability analysis, Coniput. Moth. Appl. Meeh. Engrg., 169. 161-176. 1999.
  • 21. W. STANKIEWICZ, M. MORZYŃSKI, B.R. NOACK. G. TADMOR. Reduced Order Galerkin Models of Flow Around NACA-0012 Airfoil, Mathem. Modelling and Analysis. 13. 1. 113-122, 2008.
  • 22. P. HOLMES, J.L. LUMLEY, G. BERKOOZ, Turbulence, Coherent Structures. Dynamical Systems and Symmetry, Cambridge University Press, Cambridge 1998.
  • 23. D. REMPFER, Kohärente Strukturen und Chaos beim laminar-turbulenten Grenzschichtumschlag (transl.: Coherent structures and, chaos of the laminar-turbulent boundary-layer transition) PhD theses, Fakultät Verfahrenstechnik der Universität Stuttgart. 1991 (Part of this work has been pnblished by D. REMPFER. F. H. FAZLE. in J. Fluid Mech.. 260 &275).
  • 24. D. REMPFER, Empirische Eigenfunktionen und Galerkin-Projektionen zur Beschreibung des laminar-turbulenten Grenzschichtumschlags (transl.: Empirical eigenfunctions and Galerkin projection for the description of the laminar-turbulent boundary-layer transition), Habilitation Thesis, Fakultat für Luft- und Raumfahrttechnik, Universität Stuttgart, 1995.
  • 25. G. BERKOOZ, P. HOLMES, J.L. LUMLEY, The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech., 25, 539-575, 1993.
  • 26. L. SIROVICH, Turbulence and the dynamics of coherent structures, Quart. Appl. Math., 45, 561-590, 1987.
  • 27. G. TADMOR, B.R. NOACK, M. MORZYŃSKI, S. SIEGEL, Low-dimensional models for feedback flow control. Part II: Controller design and dynamic estimation, [in:] 2nd AIAA Flow Control Conference, Portland, Oregon. U.S.A., June 28-July 1, 2004, AIAA Paper, 2004-2409 (invited contribution).
  • 28. B.R. NOACK, M. SCHLEGEL, B. AHLBORN, G. MUTSCHKE, M. MORZYŃSKI, P. COMTE, G. TADMOR, A finite-time thermodynamics formalism for unsteady flows, J. Non-Equilib. Thermodyn., 33 (2), 1-45, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0014-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.