Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 59, nr 2 | 97-117
Tytuł artykułu

On the exponential decay for viscoelastic mixtures

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the study of mixtures composed of a thermoelastic solid and a viscous fluid. For these mixtures, the dissipation effects are connected with the viscosity rate of one constituent and with the relative velocity vector. Using the time-weighted surface power method, associated with the linear process, we obtain some spatial decay estimates, characterized by time-independent and time-dependent decay rates, respectively. The first type of estimate is appropriate for large values of time, while the other is useful for short values of the same variable.
Wydawca

Rocznik
Strony
97-117
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Department of Information Engineering and Applied Mathematics University of Salerno 84084 Fisciano (Sa), Italy
Bibliografia
  • 1. C. TRUESDELL and R. TOUPIN, The dassical field theories, Handbuch der Physik, S. FLUGGE [Ed.J, vol. III/3, Springer-Verlag, Berlin 1960.
  • 2. P. KELLY, A reacting continuum, Internat. J. Engrg. ScL, 2, 129-153, 1964.
  • 3. A, C. ERINGEN and J. D. INGRAM, A continuum theory of chemically reacting media-I, Internat J. Engrg. Sci., 3, 197-212, 1965.
  • 4. J. D. INGRAM and A. C. ERINGEN, A continuum theory of chemically reacting media -II. Constitutive eguations of reacting fluid mixtures, Internat. J. Engrg. Sci., 4, 289-322, 1967.
  • 5. A. E. GREEN and P. M. NAGHDI, A dynamical theory of interacting continua, Internat. J. Engrg. Sci., 3, 231-241, 1965.
  • 6. A. E. GREEN and P. M. NAGHDI, A notę on mixtures, Internat. J. Engrg. Sci., 6, 631-635, 1968.
  • 7. I. MULLER, A thermodynamic theory of mixtures of fluids, Arch. Ration. Mech. Anal., 28, 1-39, 1968.
  • 8. R. M. BOWEN and J. C. WIESE, Diffusion in mixtures of elastic materials, Internat. J. Engrg. Sci., 7, 689-722, 1969.
  • 9. R. M. BOWEN, Theory of mixtures, Continuum Physics, A. C. ERINGEN [Ed.], vol. III, Academic Press, New York 1972.
  • 10. R. J. ATKIN and R. E. CRAINE, Continuum theories of mixtures: basic theory and his-torical development, Quart. J. Mech. Appl. Math., 29, 209-245, 1976.
  • 11. R. J. ATKIN and R. E. CRAINE, Continuum theories of mixtures: Applications, J. Inst. Math. Appl., 17, 153-207, 1976.
  • 12. A. BEDFORD and D. S. DRUMHELLER, Theory o f immiscible and structured mixtures, Internat. J. Engrg. Sci., 21, 863-960, 1983.
  • 13. I. SAMOHYL, Thermodynamic of irreversible processes in fluid mixtures, Teubner Verlag, Leibzig, 1987.
  • 14. K. R. RAJAGOPAL and L. TAO, Mechanics of mixtures, World Scientific, Singapore 1995.
  • 15. T. R. STEEL, Applications of a theory of interacting continua, Quart. J. Mech. Appl. Math., 20, 57-72, 1967.
  • 16. A. BEDFORD and M. STERN, A multi-continuum theory for composite elastic materials, Acta Mech., 14, 85-102, 1972.
  • 17. A. BEDFORD and M. STERN, Toward a diffusion continuum theory for composite elastic materials, J. Appl. Mech., 38, 8-14, 1972.
  • 18. D. IE§AN, On the theory of mixtures of thermoelastic solids, J. Thermal Stresses, 14, 389-408, 1991.
  • 19. D. IESAN, Existence theorems in the theory of mixtures, J. Elasticity, 42, 145-163, 1996.
  • 20. R. J. ATKIN, P. CHADWICK and T. R. STEEL, Unigueness theorems for linearized theories of interacting continua, Matematika, 14, 27-42, 1967.
  • 21. R. J. KNOPS and T. R. STEEL, Uniqueness in the linear theory of a mixture of two elastic solids, Internat. J. Engrg. Sci., 7, 571-577, 1969.
  • 22. R. QUINTANILLA, Existence and exponential decay in the linear theory of viscoelastic mixtures, Eur. J. Mech. A/Solids, 24, 311-324, 2005.
  • 23. D. IESAN, On the theory of viscoelastic mixtures, J. Thermal Stresses, 27, 1125-1148, 2004.
  • 24. C. O. HORGAN and J. K. KNOWLES, Recent developments concerning Saint-Venant's principle, Adv. Appl. Mech., 23, T. Y. Wu and J. W. HUTCHINSON [Eds.], Academic Press, New York, 179-269, 1983.
  • 25. C. O. HORGAN, Recent developments concerning Saint-Venant's principle: Ań update, Appl. Mech. Rev., 42, 295-303, 1989.
  • 26. C. O. HORGAN, Recent developments concerning Saint-Venant's principle: A second up-date, Appl. Mech. Rev., 49, S101-S111, 1996.
  • 27. S. CHIRITA, Saint-Venant's principle in linear thermoelasticity, J. Thermal Stresses, 18, 485-496, 1995.
  • 28. R. QUINTANILLA, End effects in thermoelasticity, Math. Methods Appl. Sci., 24, 93-102, 2001.
  • 29. R. QUINTANILLA, Damping of end effects in a thermoelastic theory, Appl. Math. Lett., 14,137-141, 2001.
  • 30. R. QUINTANILLA, On the linear problem of swelling porous elastic soils, J. Math. Anal. Appl., 269, 50-72, 2002.
  • 31. F. BOFILL, M. DALMAU and R. QUINTANILLA, End effects of Saint-Venant's type in mixtures of thermoelastic solids. Proc. XI-Wascom 62-67, R. MONACO, M. P. BIANCHI, S. RIONERO [Eds.], 2002.
  • 32. S. CHIRITA and M. CIARLETTA, Time-weighted surface power function method for the study of spatial behaviour in dynamics of continua, Eur. J. Mech. A/Solids, 18, 915-933, 1999.
  • 33. M. CIARLETTA and F. PASSARELLA, On the spatial behaviour in dynamics of elastic mixtures, Eur. J. Mech. A/Solids, 20, 969-979, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT7-0005-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.