Warianty tytułu
Języki publikacji
Abstrakty
In this present paper, first the equations of generalized micropolar thermodiffusive medium, based on the theory of Lord and Shulman with one relaxation time are derived and then, deformation in a micropolar thermoelastic diffusive medium has been studied due to various sources. Laplace and Fourier transforms are used to solve the problem. The application of concentrated normal force, thermal point source and chemical potential point source has been considered to show the utility of the solution obtained. The transformed components of stress, temperature distribution and chemical potential are inverted numerically using a numerical inversion technique. The effect of micropolarity and diffusion on these quantities are presented graphically in order to illustrate and compare the analytical results. Some special cases of micropolarity and diffusion are also deduced.
Czasopismo
Rocznik
Tom
Strony
317-342
Opis fizyczny
Bibliogr. 31 poz., wykr.
Twórcy
autor
autor
autor
- Kurukshetra University, Department of Mathematics, Kurukshetra-136 119, Haryana, India, rajneesh_kuk@rediffmail.com
Bibliografia
- 1. A. C. ERINGEN, Theory of micropolar elasticity, [in:] Fracture, H. Liebovitz [Ed.], Vol. V, Academic Press, New York 1968.
- 2. A. C. ERINGEN, Balance laws of micromorphic continua-I, Int. J. of Engineering Science, 30, 805-810.
- 3. G. A. MAUGIN and MILD, A solitary wave in micropolar elastic crystals, Int. .J. of Engineering Sciences, 24, 1474-1481, 1986.
- 4. A. C. ERINGEN, Foundations of micropolar thermoelasticity, International Centre for Mechanical Science, course and lectures, No. 23, Springer, Berlin 1970.
- 5. A. C. ERINGEN, Micro-continum Field Theories-I, Foundation and Solids, Springer-Verlag, Berlin 1999.
- 6. W. NOWACKI, Theory of asymmetric elasticity, Pergamon Press, Oxford 1986.
- 7. T. R. TOUCHERT, W. D. CLAUS JR. and T. ARIMAN, The linear theory of micropolar therrnoelasticity, Int. J. Eng. Sci., 6, 37-47, 1968.
- 8. S. DOST and B. TABARROK. Genralized micropolar thermoelasticity, Int. J. Eng. Sci., 16, 173, 1978.
- 9. D. S. CHANDERSEKHARAIAH, Heat flux a dependent micropolar thermoelasticity, Int. J. Eng. Sci., 24, 1389-1395, 1986.
- 10. E. BOSCHI and D. IESAN, A generalized theory of linear micropolar thermoelasticity, Meccanica, 7, 154-157, 1973.
- 11. W. NOWACKI. Dynamical problems of thermo diffusion in solids I, Bull. Acad. Pol. Sci. Ser. Sci., 22, 55-64, 1974.
- 12. W. NOWACKI, Dynamical problems of thermo diffusion in solids II, Bull. Acad. Pol. Sci. Ser. Sci., 22, 129-135, 1974.
- 13. W. NOWACKI, Dynamical problems of thermo diffusion in solids II, Bull. Acad. Pol. Sci. Ser. Sci., 22, 257-266, 1974.
- 14. W. NOWACKI. Dynamical problems of thermo diffusion in solids, Engg. Frac. Mech., 8. 261-266. 1976.
- 15. S. OLESIAK and Y. A. PYRYEV, .A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder, Int. J. Engg. Sci.. 33, 773-780, 1995.
- 16. H. H. SHERIEF, H. SALEH and F. HAMZA, The theory of generalized thermoelastic diffusion, Int. J. Engg. Sci., 42, 591-608, 2004.
- 17. H. H. SHERIEF, H. SALEH, A half-space problem in the theory of generalized thermoelastic diffusion, Int. J. of Solid and Structures, 42, 4484-4493, 2005.
- 18. B. SINGH, Reflection of P and SV waves from free surface of an elastic soild with generalized thermodiffusion, J. Earth Syst. Sci., 114, 2, 159-168, 2005.
- 19. B. SINGH, Reflection of SV waves from free surface of an elastic soild with generalized thermoelastic diffusion, J. of Earth System and Sciences, 114, 2, 159-168, 2005.
- 20. M. AOUADI, Variable electrical and thermal conductivity in the theory of generalized thermodiffusion, ZAMP, 57, 2, 350-366, 2006.
- 21. M. AOUADI, A generalized thermoelastic diffusion problem for an infinitely long solid cylinder, Int. J. of Mathematics and Mathematical Sciences Article ID 25976, 15 pages, 2006.
- 22. M. AOUADI, A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion, Int J. Solids Struct., 44, 5711-5722, 2007.
- 23. M. AOUADI, Uniqueness and reciprocity theorem in the theory of generalized thermoelasic diffusion. Journal of Thermal Streses, 30, 665-678, 2007.
- 24. M. AOUADI, Generalized theory of thermoelasic diffusion for an anisotropic media, Journal of Thermal Streses, 31, 270-285, 2008.
- 25. W. NOWACKI, Dynamical problems of thermodiffusion in elastic solid, Proc. Vib. Prob., 15. 105-128, 1974.
- 26. P. ATKINS, Physical Chemistry, fifth ed. Oxford University Press, London 1994.
- 27. R. KUMAR and S. DESWAL. Mechanical and thermal sources in a micro-polar generalized thermoelastic medium,, J. of Sound and Vibration, 239, 3, 467-488, 2001.
- 28. N. SHARMA, P. RAM and R. KUMAR, Plane strain deformation in generalized thermoelastic diffusion, Int. J. of Thermophysics.
- 29. R. KUMAR and P. AILAWALIA. Elastodynamics of inclined loads in a micro-polar cubic crystal, Mechanics and Mechnical Engg., 9, 2, 57-75, 2005.
- 30. A. C. ERINGEN, Plane waves in non-local micropolar elasticity, Int. J. Engg. Sci., 22, 1113-1121, 1984.
- 31. L. THOMAS, Fundamental of heat transfer, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0064-0002