Warianty tytułu
Języki publikacji
Abstrakty
In the perturbation theory of linear descriptor systems, it is well known that the theory of eigenvalues and eigenvectors of regular homogeneous matrix pencils is complicated by the fact that arbitrarily small perturbations of the pencil can cause them to disappear. In this paper, the perturbation theory of complex Weierstrass canonical form for regular matrix pencils is investigated. Moreover, since there are applications such that the eigenvalues and eigenvectors do not disappear upon by arbitrarily small perturbations, expressions for the relative error of Fw and Gw, i.e., [wzór] are provided by using the Frobenius norm [wzór].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5-13
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
Bibliografia
- [1] Brenan K.E., Campbell S.L., Petzold L.R., Numerical solution of initial-value problems in differential-algebraic equations, Classics in Applied Mathematics, 14, SIAM, Philadelphia, PA, 1996.
- [2] Campbell S.L., Singular systems of differential equations. I. Research Notes in Mathematics, 40, Pitman, Boston, 1980.
- [3] Campbell S.L., Singular systems of differential equations. II. Research Notes in Mathematics, 61, Pitman, Boston, 1982.
- [4] Dai L., Singular control systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, Heidelberg, 1989.
- [5] Gantmacher R.F., The Theory of Matrices, Vol. I, Vol. II, Chelsea, New York, 1959.
- [6] Kalogeropoulos G.I., Matrix pencils and linear systems, Ph.D Thesis, City University, London, 1985.
- [7] Karcanias N., Matrix pencil approach to geometric systems theory, Proceedings of IEE, 126, 1979, pp. 585-590.
- [8] Karcanias N., Hayton G.E., Generalized autonomous differential systems, algebraic duality, and geometric theory, Proceedings of IF AC VIII, Triennial World Congress, Kyoto, Japan, 1981.
- [9] Kunkel P., Mehrmann V., Differential-algebraic equations, European Mathematical Society, Zurich, Switzerland, 2006.
- [10] Lancaster P., On regular pencils of matrices arising in the theory of vibrations, Quart. J. Mech. Appl. Math., 16, 1963, pp. 253-257.
- [11] März R., On the Numerical Treatment of Differential-Algebraic Equations, Z. Angew. Math. Mech., 67 (4), 1987, pp. 23-34.
- [12] Mehrmann V., The autonomous linear quadratic control problem: Theory and numerical solution, Lecture Notes in Control and Information Sciences, 163, Springer-Verlag, Berlin, Heidelberg, 1991.
- [13] Mitrouli M., Kalogeropoulos G., A compound matrix algorithm for the computation of the Smith form of a polynomial matrix, Numerical Algorithms, 7 (2), 1994, pp. 145-159.
- [14] Stewart G.W., Perturbation theory for rectangular matrix pencils, UMIACS-TR-91-105, CS-TR 2721 (Technical Report), pp. 1-7.
- [15] Turnbull H.W., Aitken A.C., An introduction to the theory of canonical matrices, Dover Publications, 1961. Received October 4, 2008
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0058-0026