Czasopismo
2010
|
Vol. 58, no 3
|
259-268
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We show that every Lipschitz map defined on an open subset of the Banach space C(K), where K is a scattered compactum, with values in a Banach space with the Radon-Nikodym property, has a point of Frechet differentiability. This is a strengthening of the result of Lindenstrauss and Preiss who proved that for countable compacta. As a consequence of the above and a result of Arvanitakis we prove that Lipschitz functions on certain function spaces are Gateaux differentiable.
Słowa kluczowe
Rocznik
Tom
Strony
259-268
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Technical University of Warsaw, PI. Politechniki 1, 00-661 Warszawa, Poland, rafalgorakgmail.corn
Bibliografia
- [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46.
- [2] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190.
- [3] A. Arvanitakis, Some remarks on Radon-Nikodym compact spaces, ibid. 172 (2002), 41-60.
- [4] A. Aviles, Countable products of spaces of finite sets, ibid. 151 (2002), 147-159.
- [5] A. Aviles and O. Kalenda, Compactness in Banach space theory - selected problems, Rev. R. Acad. Cien. Ser. A. Mat. 104 (2010), 337-352.
- [6] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Colloq. Publ. 48, Amer. Math. Soc., 1993.
- [7] J. M. Borwein and W. B. Moors, Separable determination of integrability and minimality of the Clarke subdifferential mapping, Proc. Amer. Math. Soc. 128 (1999), 215-221.
- [8] J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, in: Actes du Deuxierne Colloque d’Analyse Fonctionnelle de Bordeaux (Bordeaux, 1973), I, Publ. Dep. Math. (Lyon) 10 (1973), no. 2, 29-39.
- [9] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. & Tech., Harlow, 1993.
- [10] M. Fabian, Gateaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1997.
- [11] M. Fabian, G. Godefroy and V. Zizler, The structure of uniformly Gateaux smooth Banach spaces, Israel J. Math. 124 (2001), 243-252.
- [12] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math. 26 (1966), 133-136.
- [13] J. Lindenstrauss and D. Preiss, On Fréchet differentiability of Lipschitz maps between Banach spaces, Ann. of Math. 157 (2003), 257-288.
- [14] P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29.
- [15] W. Marciszewski, On Banach spaces C(K) isomorphic to co(Γ), ibid. 156 (2003), 295-302.
- [16] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, 2nd ed.. Lecture Notes in Math. 1364, Springer, 1993.
- [17] D. Preiss, Gateaux differentiate functions are somewhere Fréchet differentiate, Rend. Circ. Mat. Palermo 33 (1984), 122-133.
- [18] Ch. Stegall, The Radon-Nikodym property in conjugate Banach spaces II, Trans. Amer. Math. Soc. 264 (1981), 507-519.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0058-0023