Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 58, no 3 | 221-237
Tytuł artykułu

Practical stability in terms of two measures for hybrid dynamic systems

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study hybrid dynamic systems on time scales. Using Lyapunov-like functions, we obtain sufficient conditions for practical stability and strict practical stability in terms of two measures for hybrid dynamic systems on time scales.
Wydawca

Rocznik
Strony
221-237
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
autor
  • School of Science, University of Jinan, Jinan, Shandong 250022, P.R. China, sshrong@163.com
Bibliografia
  • [1] D. Acheson, From Calculus to Chaos: An Introduction to Dynamics, Oxford Univ. Press, Oxford, 1997.
  • [2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001.
  • [3] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
  • [4] F. H. Clark, Yu. S. Ledyaev, R. I. Stern and P. R. Woleski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.
  • [5] L. T. Grujić, Exact determination of a Lyapunov function and the asymptotic stability domain, Int. J. Systems Sci. 23 (1992), 1871-1888.
  • [6] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.
  • [7] V. Lakshmikantham, S. Leela and A. A. Martynyuk, Practical Stability of Nonlinear Systems, World Sci., Singapore, 1990.
  • [8] V. Lakshmikantham and R. N. Mohapatra, Strict stability of differential equations, Nonlinear Anal. 46 (2001), 915-921.
  • [9] V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer, Dordrecht, 1996.
  • [10] V. Lakshmikantham and A. S. Vatsala, Hybrid systems on time scales, J. Comput. Appl. Math. 141 (2002), 227-235.
  • [11] V. Lakshmikantham and Y. Zhang, Strict practical stability of delay differential equation, Appl. Math. Comput. 118 (2001), 275-285.
  • [12] J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method, Academic Press, New York, 1961.
  • [13] A. M. Nerode and W. Kohn, Models for Hybrid Systems, Lecture Notes in Comput. Sci. 36, Springer, Berlin, 1993.
  • [14] P. G. Wang and X. Liu, New comparison principle and stability criteria for impulsive hybrid systems on time scales, Nonlinear Anal. Real World Appl. 7 (2006), 1096-1103.
  • [15] P. G. Wang and X. Liu Practical stability of impulsive hybrid differential systems in terms of two measures on time scales, Nonlinear Anal. 65 (2006), 2035-2042.
  • [16] P. G. Wang, M. Wu and Y. H. Wu, Practical stability in terms of two measures for discrete hybrid systems, Nonlinear Anal. Hybrid Systems 2 (2008), 58-64.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0058-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.