Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 58, no 2 | 91-107
Tytuł artykułu

On the set-theoretic strength of countable compactness of the Tychonoff product 2R

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We work in ZF set theory (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) and show the following: 1. The Axiom of Choice for well-ordered families of non-empty sets (ACWO) does not imply "the Tychonoff product 2R, where 2 is the discrete space {0,1}, is countably compact" in ZF. This answers in the negative the following question from Keremedis, Felouzis, and Tachtsis [Bull. Polish Acad. Sci. Math. 55 (2007)]: Does the Countable Axiom of Choice for families of non-empty sets of reals imply 2R is countably compact in ZF? 2. Assuming the Countable Axiom of Multiple Choice (CMC), the statements "every infinite subset of 2R has an accumulation point", "every countably infinite subset of 2R has an accumulation point", "2R is countably compact", and UF(ω) = "there is a free ultrafilter on ω" are pairwise equivalent. 3. The statements "for every infinite set X, every countably infinite subset of 2X has an accumulation point", "every countably infinite subset of 2R has an accumulation point", and UF(ω) are, in ZF, pairwise equivalent. Hence, in ZF, the statement "2R is countably compact "implies UF(ω). 4. The statement "every infinite subset of 2R has an accumulation point" implies "every countable family of 2-element subsets of the powerset Ρ(R) of R has a choice function". 5. The Countable Axiom of Choice restricted to non-empty finite sets, (CACfin), is, in ZF, strictly weaker than the statement "for every infinite set X, 2X is countably compact".
Wydawca

Rocznik
Strony
91-107
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Karlovassi, Samos, 83200, Greece, Itah@aegean.gr
Bibliografia
  • [1] S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math. 56 (1965), 325-345.
  • [2] H. Herrlich, Compactness and the Axiom of Choice, Appl. Categ. Structures 4 (1996), 1-14.
  • [3] P. Howard, K. Keremedis, J. E. Rubin, and A. Stanley, Compactness in countable Tychonoff products and choice, Math. Logic Quart. 46 (2000), 3-16.
  • [4] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., 1998 (see also http://consequences.emich.edu).
  • [5] T. J. Jech, The Axiom of Choice, North-Holland, Amsterdam, 1973. Reprint: Dover Publ., Mineola, NY, 2008.
  • [6] K. Keremedis, The compactness of 2R and some weak forms of the axiom of choice, Math. Logic Quart. 46 (2000), 569-571.
  • [7] K. Keremedis, E. Felouzis, and E. Tachtsis, On the compactness and countable compactness of 2R in ZF, Bull. Polish Acad. Sci. Math. 55 (2007), 293-302.
  • [8] K. Keremedis and E. Tachtsis, Extensions of compactness of Tychonoff powers of 2 in ZF, Topology Proc. 37 (2011), 15-31 (e-published on April 29, 2010).
  • [9] J. Mycielski, Two remarks on Tychonoff’s product theorem, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 12 (1964), 439-441.
  • [10] J. C. Oxtoby, Measure and Category, Springer, New York, 1980.
  • [11] M. H. Protter and C. B. Morrey, A First Course in Real Analysis, 2nd ed., Springer, New York, 1991.
  • [12] H. L. Royden, Real Analysis, 3rd ed., Macmillan, New York, 1988.
  • [13] W. Sierpiński, Fonctions additives non complètement additives ei fonctions non mesurables, Fund. Math. 30 (1938), 96-99.
  • [14] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue mea-surable, Ann. of Math. 92 (1970), 1-56.
  • [15] J. K. Truss, The axiom of choice for linearly ordered families, Fund. Math. 99 (1978), 133-139.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0053-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.