Czasopismo
2009
|
Vol. 57, no 3-4
|
251-262
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The quantization dimension function for the image measure of a shift-invariant ergodic measure with bounded distortion on a self-conformal set is determined, and its relationship to the temperature function of the thermodynamic formalism arising in multifractal analysis is established.
Rocznik
Tom
Strony
251-262
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Department of Mathematics, The University of Texas-Pan American, 1201 West University Drive, Edinburg, TX 78539-2999, U.S.A., roychowdhurymk@utpa.edu
Bibliografia
- [F1] K. J. Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997.
- [F2] K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7 (1994), 681-701.
- [GG] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer, 1992.
- [GL1] S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math. 1730, Springer, Berlin, 2000.
- [GL2] S. Graf and H. Luschgy, Asymptotics of the quantization errors for self-similar probabilities, Real Anal. Exchange 26 (2001), 795-810.
- [H-P] T. Halsey, M. Jensen, L. Kadanoff and I. Procaccia, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A 33 (1986), 1141-1151; Erratum, Phys. Rev. A 34 (1986), 1601.
- [LM] L. J. Lindsay and R. D. Mauldin, Quantization dimension for conformal iterated function systems, Nonlinearity 15 (2002), 189-199.
- [P] N. Patzschke, Self-conformal multifractal measures, Adv. Appl. Math. 19 (1997), 486-513.
- [P-S] Y. Peres, M. Rams, K. Simon and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, Proc. Amer. Math. Soc. 129 (2001), 2689-2699.
- [R] M. K. Roychowdhury, Quantization dimension function and Gibbs measure, preprint.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0044-0022