Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 50, no 2 | 97-120
Tytuł artykułu

Resonance acceleration of a charged particle in a laser beam and static magnetic field

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conditions at which the charged particles can be accelerated to the significant energies under interaction with the laser or maser radiation and the static magnetic field have been studied. The studies have been performed on the basis of the derived by the author's analytical solutions. With the example of an electron, the trajectory, velocity and kinetic energy as a function of the acceleration time have been shown. We have defined the maximal static magnetic field which was found to be appropriate to achieve the resonance condition in the acceleration process. At certain values of the magnetic field, the projections of the 3-dimensional trajectory onto the plane perpendicular to the axis show quite regular curves in the shape of epicycloids or hypocycloids with convex and concave bows, respectively. In the resonance region, there appears an increase in effectiveness of the energy transfer from the electromagnetic field to the accelerated particle and it can be realized simply through a very small increase of magnetic induction. The significant gain of the energy by the accelerated electron occurs only in the case of inversely directed laser beam velocity and the static magnetic field. The maximal energy can be increased by rising the laser beam or the magnetic field intensities. The energy gained by an electron depends on the acceleration time and it increases until the maximum energy is reached. The distance the electron covers to gain the maximal energy, depends on the intensities of the laser beam and the static magnetic field, and on the acceleration time. The analysis of acceleration process in the maser beam shows many advantages arising from the longer wavelength radiation emitted. The essential advantage is connected with the reduction of the static axial magnetic field intensity.
Wydawca

Rocznik
Strony
97-120
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • The Kazimierz Pułaski Technical University of Radom, Education Department, J. Malczewskiego 20A, 26-600 Radom, Poland, a.dubik@interia.eu
Bibliografia
  • 1. B. A. REMINGTON, D. ARNETT, R. P. DRAKE and H. TAKABE, Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers, Science, 284, 1488-1493, 1999.
  • 2. P. BAUM and A. H. ZEWAIL, Attosecond electron pulses for 4D diffraction and microscopy, PNAS, 104, 18409-18414, 2007.
  • 3. J.D. LINDL, P. AMENDT, R. L. BERGER, S. G. GLENDINNING, S. H. GLENZER, S.W. HAAN, R. L. KAUFFMAN, O. L. LANDEN and L. J. SUTER, The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas, 11, 339-49, 2004.
  • 4. K. W. D. LEDINGHAM, P. MCKENNA and R. P. SINGHAL, Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers, Science, 300, 1107-1111, 2003.
  • 5. F. V. HARTEMANN, S. N. FOCHS, G. P. LE SAGE, N. C. LUHMANN, JR., J. G. WOODWORTH, M. D. PERRY, Y. J. CHEN, A. K. KERMAN, Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus, Phys. Rev. E, 51, 4833-4843, 1995.
  • 6. J.J. XU, Q. KONG, Z. CHEN, P. X. WANG, D. LIN and Y. K. HO, Vacuum laser acceleration in circularly polarized fields, J. Phys. D: Appl. Phys., 40, 2464-2471, 2007; Y. I. SALAMIN, Single-electron dynamics in a tightly focused laser beat wave: acceleration in vacuum, J. Phys. B: At. Mol. Opt. Phys., 38, 4095-4110, 2005.
  • 7. K. P. SINGH, Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum, Phys. Rev. E, 69, 056410-1-056410-5, 2004.
  • 8. J. FAN, W. LUO, E. FOURKAL, T. LIN, J. LI, I. VELTCHEV, C.-M. MA, Shielding design for a laser-accelerated proton therapy system, Phys. Med. Biol., 52, 3913-3930, 2007; Y. I. SALAMIN, Z. HARMAN, C. H. KEITEL, Direct high-power laser acceleration of ions for medical applications, Phys. Rev. Lett, 100, 155004-155008, 2008.
  • 9. M. BORGHESI, J. FUCHS, O. WILLI, Laser-accelerated high-energy ions: state of-the-art and applications, J. Phys.: Conf. Ser., 58, 74-80, 2007.
  • 10. T. TAJIMA, G. MOUROU, Zettawatt-exawatt lasers and their applications in ultrastrong-field physics, Phys. Rev. ST Accel. Beams, 5, 031301-031309, 2002.
  • 11. K. P. SINGH, Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum, J. Appl. Phys., 100, 044907-1-044907-4, 2006.
  • 12. H. LIU, X. T. HE, H. HORA, Additional acceleration and collimation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction, Appl. Phys. B, 82, 93-97, 2006.
  • 13. H. Y. NIU, X. T. HE, B. QIAO and C. T. ZHOU, Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses, Laser and Particle Beams, 26, 51-59, 2008.
  • 14. Y. I. SALAMIN, F. H. M. FAISAL, CH. H. KEITEL, Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance, Phys. Rev. A, 62, 053809-6, 2000.
  • 15. X. C. GE, R. X. LI, Z. Z. HU, Phase dependence of relativistic electron dynamics and emission spectra in the superposition of an ultraintense laser field and a strong uniform magnetic field, Phys. Rev. E, 68, 056501-056508, 2003.
  • 16. H. LIU, X. T. HE, S. G. CHEN, Resonance acceleration of electrons in combined strong magnetic and intense laser fields, Phys. Rev. E, 69, 066409-1-066409-7, 2004.
  • 17. K. P. SINGH, Electron acceleration by a circularly polarized laser pulse in a plasma, Phys. Plasmas, 11, 3992-3995, 2004.
  • 18. FEN-CE CHEN, X. T. HE, Z. M. SHENG, H. ZHANG, M. Y. Yu, Electron acceleration by the self-generated magnetic field of multiple laser pulses in plasma, Phys. Scr., 75, 340-344, 2007.
  • 19. D. N. GUPTA, S. KUMAR, M. YOON, M. S. HUR, H. SUK, Electron acceleration by a short laser beam in the presence of a long-wavelength electromagnetic wave, J. Applied Physics, 102, 056106-1-056106-3, 2007.
  • 20. A. DUBIK, Ruch naładowanych cząstek w polach elektromagnetycznych, Monografia Nr 101, Wydawnictwo Politechniki Radomskiej, Radom 2007.
  • 21. A. DUBIK, M. J. MAŁACHOWSKI, Ścisłe rozwiązanie relatywistycznych równań ruchu naładowanej cząstki w wiązce laserowej w obecności stałego, osiowego pola magnetycznego, Biul. WAT, 1, 2009.
  • 22. A. DUBIK and M. J. MAŁACHOWSKI, Basic features of a charged particle dynamics in a laser beam with static axial magnetic field, Opto-Electronics Review, 17, 4, 275-286, 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0044-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.