Czasopismo
2009
|
Vol. 57, no 1
|
81-89
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let ƒ be a nonnegative submartingale and S(ƒ) denote its square function. We show that for any λ > 0, λP(S(ƒ) ≥ λ) ≤ π/2||ƒ||1, and the constant π/2 is the best possible. The inequality is strict provided ||ƒ||1 ≠ 0.
Słowa kluczowe
Rocznik
Tom
Strony
81-89
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, ados@mimuw.edu.pl
Bibliografia
- [1] B. Bollobas, Martingale inequalities, Math. Proc. Cambridge Philos. Soc. 87 (1980), 377-382.
- [2] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42.
- [3] D. L. Burkholder, Martingale and Fourier analysis in Banach spaces, in: Probability and Analysis (Varenna, 1985), Lecture Notes in Math. 1206, Springer, 1986, 61-108.
- [4] D. L. Burkholder, The best constant in the Davis inequality for the expectation of the martingale square function, Trans. Amer. Math. Soc. 354 (2002), 91-105.
- [5] D. Cox, The best constant in Burkholder’s weak-L1 inequality for the martingale square function, Proc. Amer. Math. Soc. 85 (1982), 427-433.
- [6] A. Osękowski, Two inequalities for the first moment of a martingale, its square and maximal function, Bull. Polish Acad. Sci. Math. 53 (2005), 441-449.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0036-0009