Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 56, no 3-4 | 239-256
Tytuł artykułu

The embeddability of C0 in spaces of operators

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of Emmanuele and Drewnowski are used to study the containment of c0 in the space Kw* (X*, Y), as well as the complementation of the space Kw* (X*,Y) of w*-w compact operators in the space Lw*(X*, Y) of w*-w operators from X* to Y.
Wydawca

Rocznik
Strony
239-256
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
autor
  • Department of Mathematics, University of Wisconsin-River Falls River Falls, WI 54022-5001, U.S.A., ioana.ghenciu@uwrf.edu
Bibliografia
  • [1] K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35-41.
  • [2] E. Bator and P. Lewis, Complemented spaces of operators, Bull. Polish Acad. Sci. Math. 50 (2002), 413-416.
  • [3] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
  • [4] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58.
  • [5] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
  • [6] —, A survey of results related to the Dunford-Pettis property, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 15-60.
  • [7] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., 1977.
  • [8] L. Drewnowski, Copies of l∞ in an operator space, Math. Proc. Cambridge Philos. Soc. 108 (1990), 523-526.
  • [9] —, On Banach spaces with the Gelfand-Phillips property, Math. Z. 193 (1986), 405-411.
  • [10] N. Dunford and J. T. Schwartz, Linear Operators. Part I, General Theory, Inter-science Publ., New York, 1958.
  • [11] G. Emmanuele, A remark on the containment of C0 in spaces of compact operators, Math. Proc. Cambridge Philos. Soc. Ill (1992), 331-335.
  • [12] —, Remarks on the uncomplemented subspace W(E,F), J Funct. Anal. 99 (1991), 125-130.
  • [13] —, About the position of Kω* (X*,Y) inside L ω* (X*,Y), Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 123-133.
  • [14] —, On the containment of c0 by spaces of compact operators, Bull. Sci. Math. 115 (1991), 177-184.
  • [15] —, Answer to a question by M. Feder about K(X,Y), Rev. Mat. Univ. Complut. Madrid 6 (1993), 263-266.
  • [16] G. Emmanuele and K. John, Uncomplementability of spaces of compact operators in larger spaces of operators, Czechoslovak Math. J. 47 (1997), 19-31.
  • [17] M. Feder, On the non-existence of a projection onto the space of compact operators, Canad. Math. Bull. 25 (1982), 78-81.
  • [18] —, On subspaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205.
  • [19] I. Ghenciu, Complemented spaces of operators, Proc. Amer. Math. Soc. 133 (2005), 2621-2623.
  • [20] I. Ghenciu and P. Lewis, Dunford-Pettis properties and spaces of operators, Canad. Math. Bull., to appear.
  • [21] —, —, The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets, Colloq. Math. 106 (2006), 311-324.
  • [22] —, —, Strong Dunford-Pettis sets and spaces of operators, Monatsh. Math. 144 (2005), 275-284.
  • [23] N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
  • [24] E. H. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, New York, 1974.
  • [25] P. Lewis, Spaces of operators and c0, Studia Math. 145 (2001), 213-218.
  • [26] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
  • [27] A. Pełczyński, On Banach spaces containing L1(μ), Studia Math. 30 (1968), 231-246.
  • [28] H. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, ibid. 37 (1970), 13-36.
  • [29] W. Ruess, Duality and geometry of spaces of compact operators, in: Functional Analysis: Surveys and Recent Results III (Paderborn, 1983), North-Holland Math. Stud. 90, North-Holland, 1984, 59-78.
  • [30] T. Schlumprecht, Limited sets in Banach spaces, Dissertation, Munich, 1987.
  • [31] A. E. Tong and D. R. Wilken, The uncomplemented subspace K(E, F), Studia Math. 37 (1971), 227-236.
  • [32] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0035-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.