Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2007 | Vol. 33, no 4 | 13-26
Tytuł artykułu

Optimal control and stability of elliptic systems with integral cost functional

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a system of resonant elliptic equations and using variational methods derive suffcient conditions for solutions of the system to depend continuously on parameters. This result is employed to obtain existence of solution for some optimal control problem.
Wydawca

Czasopismo
Rocznik
Strony
13-26
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
autor
  • University of Łódź, Faculty of Mathematics and Computer Science, ul. Banacha 22, 90-238 Łódź, Poland, bors@math.uni.lodz.pl
Bibliografia
  • [1] Attouch H., Wets R., Approximation and convergence in nonlinear optimization, Nonlinear Programming, Vol. 4, 1981, pp. 367-394.
  • [2] Attouch H., Wets R., A convergence theory for saddle functions, Trans. Amer. Math. Soc., Vol. 280, 1983, pp. 1-44.
  • [3] Aze D., Attouch H., Wets R., Convergence of convex-concave saddle functions: applications to convex programming and mechanics, Annales de I’I. H.P., Vol. 5, No. 6, 1988, pp. 537-572.
  • [4] Bors D., Skowron A., Walczak S., On the stability of critical points of funclionals and solutions to boundary value problem with applications to optimal control, accepted for publication in post-conference volume of Computer Methods and Systems 2005.
  • [5] Cavazzuti E., Maine caratterizzazioni della Γ-convergenza multipla, Ann. Mat. Pura Appl., Vol. 4, 1982, pp. 69-112.
  • [6] Cavazzuti E., Γ-convergenze multiple, convergenze di punti di sella e di max-min, Boll. Un. Mat. Ital., Vol. 1-B, No. 6, 1982, pp. 251-274.
  • [7] Dal Maso G., An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.
  • [8] Greco G., Saddle topology and Min-Max Theorems, Tech. Report. Univ. Trento, 1984.
  • [9] Idczak D., Rogowski A., On generalization of Krasnoselskii’s theorem, J. Austral. Math. Soc., Vol. 72, 2002, pp. 389-394.
  • [10] Ioffe A.D., On lower semicontinuity of integral functionals, SIAM J. Control Optimization, Vol. 15, No. 6, 1977, pp. 991-1000.
  • [11] Jakszto M., Skowron A., Existence of optimal control via continuous dependence on parameters, Comput. Math. Appl.. Vol. 46, 2003, pp. 1657-1669.
  • [12] Kisielewicz M., Differential Inclusions and Optimal Controls, Kluwer Academic Publishers, Dordrecht, Boston, 1991.
  • [13] Ledzewicz U., Walczak S., Optimal control of systems governed by some elliptic equations, Discrete Contin. Dynam. Systems, Vol. 5, No. 2, 1999, pp. 279-290.
  • [14] Polyanin A.D., Linear Partial Differential Equations for Engineers and Scientists, CRC Press, Boca Raton, 2002.
  • [15] Rabinowitz P.M., Minimax methods in critical point theory with applications to differential equations, American Mathematical Society, 1992.
  • [16] Skowron A., Minimax results for semicoercive functionals with application to differential equations, accepted for publication in Acta Math. Hung.
  • [17] Walczak S., On the continuous dependence on parameters of solutions of the Dirichlet problem, Acad. Roy. Belg. Bull. Cl. Sci., Vol. 6, 1995, pp. 247-261 and 263-273.
  • [18] Walczak S., Well-posed and ill-posed optimal control problems, Jota, Vol. 109, No. 1, 2001, pp. 169-185.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0033-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.