Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 56, no 2 | 149-161
Tytuł artykułu

Characterizations of some classes of perfect spaces in terms of continuous selections avoiding supporting sets

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some kinds of perfect spaces, including paracompact perfectly normal spaces and collectionwise normal perfect spaces, are characterized in terms of continuous selections avoiding supporting sets. A necessary and sufficient condition on a domain space for a selection theorem of E. Michael [Fund. Math. 47 (1959), 173-178] to hold is also obtained.
Wydawca

Rocznik
Strony
149-161
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
Bibliografia
  • [1] R. Engelking, General Topology, Heldermann, Berlin, 1989.
  • [2] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 423-501.
  • [3] V. Gutev, H. Ohta and K. Yamazaki, Selections and sandwich-like properties via semi-continuous Banach-valued functions, J. Math. Soc. Japan 55 (2003), 499-521.
  • [4] R. W. Hansell, On characterizing non-separable analytic and extended Borel sets as types of continuous images, Proc. London Math. Soc. 28 (1974), 683-699.
  • [5] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-263.
  • [6] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
  • [7] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-382.
  • [8] -, Dense families of continuous selections, Fund. Math. 47 (1959), 173-178.
  • [9] K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.
  • [10] S. Nedev, Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), 291-317.
  • [11] C. M. Pareek, Perfect spaces, Questions Answers Gen. Topology 9 (1991), 151-157.
  • [12] D. Repovs and P. V. Semenov, Continuous Selections of Multivalued Mappings, Kluwer, Dordrecht, 1998.
  • [13] -, -, Continuous selections of multivalued mappings, in: Recent Progress in General Topology, II, M. Husek and J. van Mill (eds.), North-Holland, Amsterdam, 2002, 423-461.
  • [14] M. E. Rudin, A normal space X for which X x I is not normal, Fund. Math. 73 (1971), 179-186.
  • [15] J. C. Smith, Properties of expandable spaces, in: General Topology and its Relations to Modern Analysis and Algebra, III (Prague, 1971), J. Novak (ed.), Academia, Prague, 1972, 405-410.
  • [16] S. Todorčević, A topology on sequences of countable ordinals, Bull. Polish Acad. Sci. Math. 39 (1991), 137-140.
  • [17] J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830.
  • [18] T. Yamauchi, Continuous selections avoiding extreme points, Topology Appl. 155 (2008), 916-922.
  • [19] -, The role of countable paracompactness for continuous selections avoiding extreme points, preprint.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0029-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.