Czasopismo
2007
|
Vol. 55, no 4
|
373-385
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Suppose ƒ = (ƒn), g = (gn) are martingales with respect to the same filtration, satisfying |ƒn-ƒn-i| ≤ |gn -gn-1|, n = 1,2,..., with probability 1. Under some assumptions on ƒo, go and an additional condition that one of the processes is nonnegative, some sharp inequalities between the pth norms of ƒ and g, 0 < p < ∞, are established. As an application, related sharp inequalities for stochastic integrals and harmonic functions are obtained.
Rocznik
Tom
Strony
373-385
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Department of Mathematics, Informatics and Mechanics, Warsaw University, Banacha 2 02-097 Warszawa, Poland, ados@mimuw.edu.pl
Bibliografia
- [1] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702.
- [2] —, Explorations in martingale theory and its applications, Ecole d'Ete de Probabilites de Saint-Flour XIX—1989, Lecture Notes in Math. 1464, Springer, Berlin, 1991, 1-66.
- [3] —, Strong differential subordination and stochastic integration, Ann. Probab. 22 (1994), 995-1025.
- [4] —, Some extremal problems in martingale theory and harmonic analysis, in: Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, 99-115.
- [5] A. Osękowski, Inequalities for dominated martingales, Bernoulli 13 (2007), 54-79.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0024-0077