Czasopismo
2007
|
Vol. 55, no 4
|
303-316
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Working in the framework of reverse mathematics, we consider representations of reals as rapidly converging Cauchy sequences, decimal expansions, and two sorts of Dedekind cuts. Converting single reals from one representation to another can always be carried out in RCA[sub]0. However, the conversion process is not always uniform. Converting infinite sequences of reals in some representations to other representations requires the use of WKU[sub]0 or ACA[sub]0.
Rocznik
Tom
Strony
303-316
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Department of Mathematical Sciences, Appalachian State University, Boone, NC 28608, U.S.A., jlh@math.appstate.edu
Bibliografia
- [1] R. Dedekind, Essays on the Theory of Numbers. I: Continuity and Irrational Numbers. II: The Nature and Meaning of Numbers, authorized translation by W. W. Beman, Dover, New York, 1963.
- [2] J. L. Hirst, Minima of initial segments of infinite sequences of reals, MLQ Math. Log. Q. 50 (2004), 47-50.
- [3] U. Kohlenbach, On uniform weak Konig's lemma, Ann. Pure Appl. Logic 114 (2002), 103-116.
- [4] A. Mostowski, On computable sequences, Fund. Math. 44 (1957), 37-51.
- [5] J. Myhill, Criteria of constructibility for real numbers, J. Symbolic Logic 18 (1953), 7-10.
- [6] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Perspectives in Math. Logic, Springer, Berlin, 1989.
- [7] H. G. Rice, Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954), 784-791.
- [8] R. M. Robinson, Review of: Rekursive Funktionen by Rozsa Peter, J. Symbolic Logic 16 (1951), 280-282.
- [9] G. S. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Math. Logic, Springer, Berlin, 1999.
- [10] A. S. Troelstra, Intuitionistic extensions of the reals, Nieuw Arch. Wisk. (3) 28 (1980), 63-113.
- [11] K. Weihrauch, Computable Analysis. An Introduction, Texts Theoret. Comput. Sci. EATCS Ser., Springer, Berlin, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0024-0070