Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 55, no 4 | 303-316
Tytuł artykułu

Representations of reals in reverse mathematics

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Working in the framework of reverse mathematics, we consider representations of reals as rapidly converging Cauchy sequences, decimal expansions, and two sorts of Dedekind cuts. Converting single reals from one representation to another can always be carried out in RCA[sub]0. However, the conversion process is not always uniform. Converting infinite sequences of reals in some representations to other representations requires the use of WKU[sub]0 or ACA[sub]0.
Wydawca

Rocznik
Strony
303-316
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Department of Mathematical Sciences, Appalachian State University, Boone, NC 28608, U.S.A., jlh@math.appstate.edu
Bibliografia
  • [1] R. Dedekind, Essays on the Theory of Numbers. I: Continuity and Irrational Numbers. II: The Nature and Meaning of Numbers, authorized translation by W. W. Beman, Dover, New York, 1963.
  • [2] J. L. Hirst, Minima of initial segments of infinite sequences of reals, MLQ Math. Log. Q. 50 (2004), 47-50.
  • [3] U. Kohlenbach, On uniform weak Konig's lemma, Ann. Pure Appl. Logic 114 (2002), 103-116.
  • [4] A. Mostowski, On computable sequences, Fund. Math. 44 (1957), 37-51.
  • [5] J. Myhill, Criteria of constructibility for real numbers, J. Symbolic Logic 18 (1953), 7-10.
  • [6] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Perspectives in Math. Logic, Springer, Berlin, 1989.
  • [7] H. G. Rice, Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954), 784-791.
  • [8] R. M. Robinson, Review of: Rekursive Funktionen by Rozsa Peter, J. Symbolic Logic 16 (1951), 280-282.
  • [9] G. S. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Math. Logic, Springer, Berlin, 1999.
  • [10] A. S. Troelstra, Intuitionistic extensions of the reals, Nieuw Arch. Wisk. (3) 28 (1980), 63-113.
  • [11] K. Weihrauch, Computable Analysis. An Introduction, Texts Theoret. Comput. Sci. EATCS Ser., Springer, Berlin, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0024-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.