Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 11, no 2 | 51-61
Tytuł artykułu

Testing dimension reduction methods for image retrieval

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we compare performance of several dimension reduction techniques, namely LSI, NMF, SDD and FastMap. The qualitative comparison is based on rank lists and evaluated on a collection of faces from the Olivetti Research Lab. We compare the quality of these methods from several standpoints: the visual impact, quality of generated "eigenfaces", size of reduced matrices and retrieval performance.
Słowa kluczowe
Wydawca

Rocznik
Strony
51-61
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
autor
  • Department of Computer Science, FEECS, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic, pavel.moravec@vsb.cz
Bibliografia
  • [1] Face recognition homepage. May, 2006, http://www.face-rec.org.
  • [2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, New York, 1999.
  • [3] M.W. Berry, S.T. Dumais, and T.A. Letsche. Computational Methods for Intelligent Information Access. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San Diego, California, USA, 1995.
  • [4] E. Chavez and G. Navarro. A probabilistic spell for the curse of dimensionality. In Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX’0l), LNCS 2153. Springer-Verlag, 2001.
  • [5] C. Faloutsos and K. Lin. FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets. ACM SIGMOD Record, 24(2):163-174, 1995.
  • [6] Abby A. Goodrum. Image Information Retrieval: An Overview of Current Research. Informing Science, 3(2):63-67, 2000.
  • [7] Gisli R. Hjaltason and Hanan Samet. Properties of embedding methods for similarity searching in metric spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):530-549, 2003.
  • [8] Tamara G. Kolda and Dianne P. O'Leary. Computation and uses of the semidiscrete matrix decomposition. In ACM Transactions on Information Processing, 2000.
  • [9] P. Praks, L. Machala, and V. Snasel. On SVD-free Latent Semantic Indexing for Iris Recognition of Large Databases. In Multimedia Data mining and Knowledge Discovery; V. A. Petrushin and L. Khan (Eds.), Chapter 26. Springer Verlag.
  • [10] G. Salton and G. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New York, USA, 1983.
  • [11] F. Shahnaz, M. Berry, P. Pauca, and R. Plemmons. Document clustering using nonnegative matrix factorization. Journal on Information Processing and Management, 42:373-386, 2006.
  • [12] W. Skarbek, K.Kucharski, and M. Bober. Cascade of Dual LDA Operators for Face Recognition. In Geometric Properties for Incomplete Data, pages 199-219, Springer, 2006.
  • [13] M. W. Spratling. Learning Image Components for Object Recognition. Journal of Machine Learning Research, 7:793-815, 2006.
  • [14] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-science, 3(l):71-86, 1991.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.