Warianty tytułu
Języki publikacji
Abstrakty
As a fundamental task in many applications, human face detection is one of the most active research field at present. Most of the research works are confined to visual light image. The potential for illumination invariant feature of the Infrared image has received little attention. The SARS epidemic resulted in the introduction of IR thermal camera for non-voluntary screening on human face for fever symptoms, but they are not working in an automatic way. This paper present an human face auto detection method based on SVM. The inherent consistency of SVM with the problem is discussed. A smart biometrics system that automatically detects human face in infrared video and performs temperature measurement is implemented. The potential for illumination invariant face recognition using thermal IR imagery is fully utilized.
Czasopismo
Rocznik
Tom
Strony
29-36
Opis fizyczny
Bibliogr. 14 poz., fot., rys.
Twórcy
autor
autor
autor
- Automation Department, WuHan University of Technology
Bibliografia
- [1] C Surges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 1998.
- [2] Paola Campadelli, Raffaella Lanzarotti, Giuseppe Lipori, and Eleonora Salvi. Face and facial feature localization. In Image Analysis and Processing - ICIAP 2005: 13th International Conference, pages 1002-1009, 2005.
- [3] Chih-Chung Chang and Chih-Jen Lin. Libsvm : a library for support vector machines. Software available at http://www. csie. ntu. edu. tw/ cjlin/libsvm.
- [4] Yuehui Chen, Shuyan Jiang, and Abraham. A face recognition using dct and hybrid flexible neural tree. Neural Networks and Brain, 2005. ICNN&B ‘05., 3:1459 - 1463, 2005.
- [5] E. Hjelmas and B. K. Low. Face detection: A survey. Computer Vision and Image Understanding, 83:236-274, 2001.
- [6] S. Kong, J. Heo, B. Abidi, J. Paik, and M. Abidi. Recent advances in visual and infrared face recognition - a review. Journal of Computer Vision and Image Understanding, 97, 2005.
- [7] Jia Kui, Liyanage C, and De Silva. Combined face detection/recognition system for smart rooms. In Audio-and Video-Based Biometrie Person Authentication, 4th International Conference, AVBPA 2003. page 787 C 795, 2003.
- [8] B. Lawrence, A. Wolff Diego, Socolinsky Christopher, and K. Eveland. Using infrared sensor technology for face recognition and human identification. Proceedings of SPIE, 5074, 2003.
- [9] E. Osuna, R. Freund, , and F. Girosi. Training support vector machines: an application to face detection. In Proceedings of International Conference on Computer Vision and Pattern Recognition,CVPR’97, 1997.
- [10] D. Socolinsky, L. Wolff, J. Neuheisel, and C. Eveland. Illumination invariant face recognition using thermal infrared imagery. In IEEE Workshop Compute. Vis. Beyond Vis. Spectrum: Method Appl, volume 1, pages 527-534, 2001.
- [11] R. Suguna, N. Sudha, . and C. Chandra Sekhar. A fast and efficient face detection technique using support vector machine. In Neural Information Processing, 11th International Conference ICONIP. pages 338-343, 2004.
- [12] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.
- [13] Dihua Xi and Seong-Whan Lee. Face recognition using independent component analysis and support vector machines. In Audio- and Video-Based Biometrie Person Authentication: Third International Conference, AVBPA 2001, page 59, 2001.
- [14] M. H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: A survey,. IEEE Trans, on Pattern Analysis and Machine Intelligence, 24:34-58, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0077