Czasopismo
2007
|
Vol. 55, no 2
|
171-182
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We study convergence in law for the Euler and Euler-Peano schemes for stochastic differential equations reflecting on the boundary of a general convex domain. We assume that the coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. The proofs are based on new estimates of Krylov's type for the approximations considered.
Rocznik
Tom
Strony
171-182
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Institute of Mathematics and Physics, University of Technology and Agriculture, Kaliskiego 7, 85-796 Bydgoszcz, Poland, alucha@atr.bydgoszcz.pl
Bibliografia
- D. J. Aldous (1978), Stopping time and tightness, Ann. Probab. 6, 335-340.
- P. Billingsley (1999), Convergence of Probability Measures, Wiley, New York.
- J. Jacod and A. N. Shiryaev (2003), Limit Theorems for Stochastic Processes, Springer, Berlin
- A. Jakubowski, J. Memin et G. Pages (1989), Convergence en loi des suites d'integrales stochastiques sur I'espace D1 de Skorokhod, Probab. Theory Related Fields 81, 111-137.
- N. V. Krylov (1982), Controlled Diffusion Processes, Springer, New York.
- D. Lepingle (1995), Euler scheme for reflected stochastic differential equations, Math. Comput. Simulation 38, 119-126.
- A. V. Melnikov (1983), Stochastic equations and Krylov's estimates for semimartingales, Stochastics 10, 81-102.
- R. Pettersson (1995), Approximations for stochastic differential equations with reflecting convex boundaries, Stochastic Process. Appl. 59, 295-308.
- A. Rozkosz and L. Słomiński (1997), On stability and existence of solutions of SDEs with reflection at the boundary, Stochastic Process. Appl. 68, 285-302.
- W. Schmidt (1989), On stochastic differential equations with reflecting barriers, Math. Nachr. 142, 135-148.
- L. Słomiński (1994), On approximation of solutions of multidimensional SDEs with reflecting boundary conditions, Stochastic Process. Appl. 50, 197-219.
- L. Słomiński (1996), Stability of stochastic differential equations driven by general semi-martingales, Dissertationes Math. 349.
- L. Słomiński (2001), Euler's approximations of solutions of SDEs with reflecting boundary, Stochastic Process. Appl. 94, 317-337.
- D. W. Stroock and S. R. S. Varadhan (1971), Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24, 147-225.
- H. Tanaka (1979), Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J. 9, 163-177.
- L. Yan (2002), The Euler scheme with irregular coefficients, Ann. Probab. 30, 1172-1194.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0015-0023