Warianty tytułu
Języki publikacji
Abstrakty
Let ConvF(Rn) be the space of all non-empty closed convex sets in Euclidean space Rn endowed with the Fell topology. We prove that ConvF(lRn) ≈ Rn x Q for every n > 1 whereas ConvF(R) ≈ R x I.
Rocznik
Tom
Strony
139-143
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
autor
- Institute of Mathematics, University of Tsukuba, Ikikuba, 305-8571, Japan, sakaiktr@sakura.cc.tsukuba.ac.jp
Bibliografia
- [1] G. Beer, Topologies on Closed and Closed Convex Sets, Math. Appl. 268, Kluwer, Dordrecht, 1993.
- [2] T. A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Reg. Conf. Ser. Math. 28, Amer. Math. Soc., Providence, RI, 1976.
- [3] J. van Mill, Infinite-Dimensional Topology. Prerequisites and Introduction, North-Holland Math. Library 43, Elsevier, Amsterdam, 1989.
- [4] S. B. Nadler, Jr., J. Quinn and N. M. Stavrakas, Hyperspaces of compact convex sets, Pacific J. Math. 83 (1979), 441-462.
- [5] Nguyen To Nhu, K. Sakai and R. Y. Wong, Spaces of retractions which are homeomorphic to Hilbert space, Fund. Math. 136 (1990), 45-52.
- [6] K. Sakai and M. Yaguchi, The AR-property of the spaces of closed convex sets, Colloq. Math. 106 (2006), 15-24.
- [7] K. Sakai and Z. Yang, Hyperspaces of non-compact metrizable space which are homeomorphic to the Hilbert cube, Topology Appl. 127 (2002), 331-342.
- [8] H. Toruńczyk, On CE-images of the Hilbert cube and characterizations of Q-manfolds, Fund. Math. 106 (1980), 31-40.
- [9] Z. Q. Yang and K. Sakai, The space of limits of continua in the Fell topology, Houston J. Math. 29 (2003), 325-335.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0015-0019