Czasopismo
2006
|
Vol. 54, no 1
|
75-84
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We show that: (1) It is provable in ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) that every compact scattered T2 topological space is zero-dimensional. (2) If every countable union of countable sets of reals is countable, then a countable compact T2 space is scattered iff it is metrizable. (3) If the real line R can be expressed as a well-ordered union of well-orderable sets, then every countable compact zero-dimensional T2 space is scattered. (4) It is not provable in ZF+¬AC that there exists a countable compact T2 space which is dense-in-itself.
Słowa kluczowe
Rocznik
Tom
Strony
75-84
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
autor
autor
- Department of Mathematics, University of the Aegean, Karlovassi, 83 200, Samos, Greece, kker@aegean.gr
Bibliografia
- [l] C. Good and I. Tree, Continuing horrors of topology without choice, Topology Appl. 63 (1995), 79-90.
- [2] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence RI, 1998.
- [3] K. Keremedis, Some weak forms of the Baire category theorem, Math. Logic Quart. 49 (2003), 369-374.
- [4] K. Keremedis and E. Tachtsis, On sequentially compact subspaces of R without the axiom of choice, Notre Dame J. Formal Logic 44 (2003), 175-184.
- [5] —, —, Countable compact Hausdorff spaces need not be metrizable in ZF, Proc. Amer. Math. Soc., to appear.
- [6] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [7] A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0011-0016