Czasopismo
2006
|
Vol. 54, no 1
|
13-25
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We prove that plurisubharmonic solutions to certain boundary blow-up problems for the complex Monge-Ampere operator are Lipschitz continuous. We also prove that in certain cases these solutions are unique.
Rocznik
Tom
Strony
13-25
Opis fizyczny
Bibliogr. 9 poz,
Twórcy
autor
- Mathematisches Institute, Universitat Bern, Sidlerstrasse 5 CH-3012 Bern, Switzerland, bjoern.ivarsson@math.unibe.ch
Bibliografia
- [1] Z .Błocki, The C1,1 regularity of the pluricomplex Green function, Michigan Math. J. 47 (2000), 211-215.
- [2] L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, II. Complex Mange-Ampere, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), 209-252.
- [3] S.-Y. Cheng and S.-T. Yau, On the existence of a complete Kahler metric on non-compact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 (1980), 507-544.
- [4] B. Guan, The Dirichlet problem for complex Monge-Ampere equations and regularity of the pluri-complex Green function, Comm. Anal. Geom. 6 (1998), 687-703
- [5] —, A correction to “The Dirichlet problem for complex Monge-Ampere equations and regularity of the pivri-complex Green function”, ibid. 8 (2000), 213-218.
- [6] B. Ivarsson, Interior regularity of solutions to a complex Monge-Ampere equation, Ark. Mat. 40 (2002), 275-300.
- [7] B. Ivarsson and J. Matero, The blow-up rate of solutions to boundary blow-up problems for the complex Monge-Ampere operator, submitted, 2005, 18 pp.
- [8] S. Krantz, Function Theory of Several Complex Variables, Wiley, 1982. M. Taylor, Partial Differential Equations: Basic Theory, Springer, 1996.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0011-0011