Czasopismo
2005
|
Vol. 53, no 4
|
441-449
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Given a Hilbert space valued martingale (Mn), let (M∗n) and (Sn (M)) denote its maximal function and square function, respectively. We prove that E|Mn |≤ 2ESn (M), n = 0,1,2,…, EM∗n ≤ E|Mn| + 2ESn (M), n = 0,1,2,…. The first inequality is sharp, and it is strict in all nontrivial cases.
Słowa kluczowe
Rocznik
Tom
Strony
441-449
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland, ados@mimuw.edu.pl
Bibliografia
- [1] D. Burkholder, Sharp norm comparison of martingale maximal functions and stochastic integrals, in: Proceedings of the Norbert Wiener Centenary Congress (East Lansing, MI, 1994), Proc. Sympos. Appl. Math. 52, Amer. Math. Soc., Providence, RI, 1997, 343-358.
- [2] —, The best constant in the Davis inequality for the expectation of the martingale square function, Trans. Amer. Math. Soc. 354 (2002), 91-105.
- [3] B. Davis, On the integrability of the martingale square function, Israel J. Math. 8 (1970), 187-190.
- [4] A. M. Garsia, The Burgess Davis inequalities via Fefferman’s inequality, Ark. Mat. 11 (1973), 229-237.
- [5] —, Martingale Inequalities: Seminar Notes on Recent Progress, Benjamin, Reading, MA, 1973.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0009-0043