Warianty tytułu
Języki publikacji
Abstrakty
It is known that, for a regular riemannian foliation on a compact manifold, the properties of its basic cohomology (non-vanishing of the top-dimensional group and Poincare duality) and the tautness of the foliation are closely related. If we consider singular riemannian foliations, there is little or no relation between these properties. We present an example of a singular isometric flow for which the top-dimensional basic cohomology group is non-trivial, but the basic cohomology does not satisfy the Poincare Duality. However, we recover the Poincare Duality in the basic intersection cohomology. It is not accidental that the top-dimensional basic intersection cohomology groups of the example are isomorphic to either 0 or R. We prove that this holds for any singular riemannian foliation of a compact connected manifold. As a corollary, we show that the tautness of the regular stratum of the singular riemannian foliation can be detected by the basic intersection cohomology.
Rocznik
Tom
Strony
429-440
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
autor
- Departamento de Matemática Aplicada, Universidad del País Vasco, Alameda de Urquijo s/n, 48013 Bilbao, Spain, joseignacio.royo@ehu.es
autor
- Fédération CNRS Nord-Pas-de-Calais FR 2956, UPRES-EA 2462 LML, Faculté Jean Perrin, Université d'Artois, Rue Jean Souvraz SP 18 62 307 Lens Cedex, France, saralegi @euler. univ-art ois. fr
autor
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland, robert.wolak@im.uj.edu.pl
Bibliografia
- [1] H. Boualem and P. Molino, Modèles locaux saturés de feuilletages riemanniens singuliers, C. R. Acad. Sci. Paris 316 (1993), 913-916.
- [2] J.-L. Bryliński, Equivariant intersection cohomology, in: Contemp. Math. 139, Amer. Math. Soc., 1992, 5-32.
- [3] D. Dominguez, Finiteness and tenseness theorems for riemannian foliations, Amer. J. Math. 120 (1998), 1237-1276.
- [4] A. El Kacimi et G. Hector, Décomposition de Hodge basique pour un feuilletage riemannien, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 207-227.
- [5] A. El Kacimi, V. Sergiescu and G. Hector, La cohomologie basique d’un feuilletage riemannien est de dimension finie, Math. Z. 188 (1985), 593-599.
- [6] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19 (1980), 135-162.
- [7] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part A, Aspects Math., Vieweg, 1981.
- [8] G. Hector and M. Saralegi-Aranguren, Intersection cohomology of S1-actions, Trans. Amer. Math. Soc. 338 (1993), 263-288.
- [9] F. W. Kamber et Ph. Tondeur, Harmonic Foliations, Lecture Notes in Math. 949, Springer, 1982, 87-121.
- [10] X. Masa, Duality and minimality in riemannian foliations, Comment. Math. Helv. 67 (1992), 17-27.
- [11] V. Miguel and R. Wolak, Minimal singular riemannian foliations, C. R. Math. Acad. Sci. Paris 342 (2006), 33-36.
- [12] P. Molino, Feuilletages riemanniens réguliers et singuliers, in: Géométrie différentielle (Paris, 1986), Hermann, Paris, 1988, 173-201.
- [13] —, Riemannian Foliations, Progr. Math. 73, Birkhäuser, 1988.
- [14] —, Orbit-like foliations, in: Geometrie Study of Foliations (Tokyo, 1993), World Sci., Singapore, 1994, 97-119.
- [15] P. Molino et V. Sergiescu, Deux remarques sur les flots riemanniens, Manuscripta Math. 51 (1985), 145-161.
- [16] J. I. Royo Prieto, Estudio cohomológico de flujos riemannianos, Ph.D. Universidad del Paîs Vasco/Euskal Herriko Unibertsitatea, 2003, http://www.ehu.es/joseroyo/pdf/tesis.pdf.
- [17] J. I. Royo Prieto, M. Saralegi-Aranguren and R. Wolak, Tautness for riemannian foliations on non-compact manifolds, ArXiv.mathDG/0505675.
- [18] M. Saralegi-Aranguren and R. Wolak, The BIC of a conical fibration, Math. Notes 77 (2005), 213-231.
- [19] —, —, The BIC of a defined by an abelian qroup of isometrics, ArXiv.mathDG/0401407.
- [20] —, —, The Poincaré duality of a Killing foliation, preprint.
- [21] V. Sergiescu, Cohomologie basique et dualité des feuilletages riemanniens, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 3, 137-158.
- [22] P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713.
- [23] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
- [24] Ph. Tondeur, Geometry of Foliations, Monogr. Math. 90, Birkhäuser, 1997.
- [25] R. Wolak, Basic cohomology for singular riemanian foliations, Monatsh. Math. 128 (1999), 159-163.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0009-0042