Czasopismo
2005
|
Vol. 53, no 4
|
409-419
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
By Fin(X) (resp. Fink (X)), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let ℓ2 (τ) be the Hilbert space with weight τ and ℓf2 (τ) the linear span of the canonical orthonormal basis of ℓ2 (τ). It is shown that if E = ℓf2 (τ) or E is an absorbing set in ℓ2 (τ) for one of the absolute Borel classes aα (τ) and Mα (τ) of weight ≤ τ (α > 0) then Fin(E) and each Fink (E) are homeomorphic to E. More generally, if X is a connected E-manifold then Fin(X) is homeomorphic to E and each Fink (X) is a connected E-manifold.
Rocznik
Tom
Strony
409-419
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571 Japan, pen@math.tsukuba.ac.jp
autor
- Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571 Japan, sakaiktr@sakura.cc.tsukuba.ac.jp
autor
- Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571 Japan, masato@math.tsukuba.ac.jp
Bibliografia
- [1] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313.
- [2] D. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107.
- [3] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to No-dimensional linear metric spaces, ibid. 19 (1985), 251-260.
- [4] R. Engelking, General Topology, rev. ed., Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.
- [5] —, Theory of Dimensions, Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Berlin, 1995.
- [6] V. V. Fedorchuk, Covariant functors in the category of comacta, absolute retracts, and Q-manifolds, Uspekhi Mat. Nauk 36 (1981), no. 3, 177-195 (in Russian); English transl.: Russian Math. Surveys 36 (1981), no. 3, 211-233.
- [7] D.W. Henderson, Z-sets in ANR’s, Trans. Amer. Math. Soc. 213 (1975), 205-216.
- [8] K. Mine, Universal spaces of non-separable absolute Borel classes, Tsukuba J. Math., to appear.
- [9] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 243-254.
- [10] —, Hyperspaces of compact sets in metric linear spaces, Topology Appl. 22 (1986), 109-122.
- [11] Nguyen To Nhu and K. Sakai, Probability measure functions preserving infinite-dimensional spaces, Colloq. Math. 70 (1996), 291-304.
- [12] K. Sakai, The completion of metric ANR’s and homotopy dense subsets, J. Math. Soc. Japan 52 (2000), 835-846.
- [13] K. Sakai and M. Yaguchi, Characterizing manifolds modeled on certain dense subspaces of non-separable Hilbert spaces, Tsukuba J. Math. 27 (2003), 143-159.
- [14] —, -, Hyperspaces of Banach spaces with the Attouch-Wets topology, Set-Valued Anal. 12 (2004), 329-344.
- [15] A. H. Stone, Absolute Fσ spaces, Proc. Amer. Math. Soc. 13 (1962), 495-499.
- [16] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of ℓ2-manifolds, Fund. Math. 101 (1978), 93-110.
- [17] -, Characterizing Hilbert space topology, ibid. 111 (1981), 247-262.
- [18] —, A correction of two papers concerning Hilbert manifolds, ibid. 125 (1985), 89-93.
- [19] M. Yaguchi, Hyperspaces of finite subsets of non-separable Hilbert spaces, Tsukuba J. Math., to appear.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0009-0040