Czasopismo
2005
|
Vol. 53, no 4
|
361-375
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We present two existence results for the Dirichlet elliptic inclusion with an upper semicontinuous multivalued right-hand side in exponential-type Orlicz spaces involving a vector Laplacian, subject to Dirichlet boundary conditions on a domain Ω ⊂ R2. The first result is obtained via the multivalued version of the Leray–Schauder principle together with the Nakano–Dieudonné sequential weak compactness criterion. The second result is obtained by using the nonsmooth variational technique together with a formula for Clarke's subgradient for Lipschitz integral functionals on “nonregular” Orlicz spaces.
Rocznik
Tom
Strony
361-375
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Institute of Mathematics, Szczecin University, Wielkopolska 15, 70-451 Szczecin, Poland, nguyenht@sus.univ.szczecin.pl, congdungthai@yahoo.com
autor
- Institute of Mathematics, Szczecin Technical University, Al. Piastów 48/49, 70-310 Szczecin, Poland, paczka@ps.pl, paczdar@yahoo.com
Bibliografia
- [1] A. Anane and J.-P. Gossez, Strongly nonlinear elliptic problems near resonance. A variational approach, Comm. Partial Differential Equations 15 (1990), 1141-1159.
- [2] J. Appell, E. De Pascale, H. T. Nguyêñ and P. P. Zabrejko, Nonlinear integral inclusions of Hammer stein type, Topol. Methods Nonlinear Anal. 5 (1995), 109-122.
- [3] —, -, -, -, Multivalued superpositions, Dissertationes Math. 345 (1995).
- [4] J. Appell, H. T. Nguyêñ, and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions I, Indag. Math. (N.S.) 2 (1991), 385-395.
- [5] J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990.
- [6] R. Bader, A topological fixed-point index theory for evolution inclusions, Z. Anal. Anwendungen 20 (2001), 3-15.
- [7] G. Bartuzel and A. Fryszkowski, A class of retracts in Lp with some applications to differential inclusion, Discuss. Math. Differ. Incl. Control Optim. 22 (2002), 213-224.
- [8] O. Burkinshaw and P. Dodds, Weak sequential compactness and completeness in Riesz spaces, Canad. J. Math. 28 (1976), 1332-1339.
- [9] T. Cardinal and N. S. Papageorgiou, Hammerstein integral inclusions in reflexive Banach spaces, Proc. Amer. Math. Soc. 127 (1999), 95-103.
- [10] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces with Applications in Control Theory and Probability Theory, Kluwer, Dordrecht, 2004.
- [11] K.-C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
- [12] F. H. Clarke, Generalized gradients of Lipschitz functionals, Adv. Math. 40 (1981), 52-67.
- [13] —, Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1983.
- [14] J. Dieudonné, Sur les espaces de Köthe, J. Anal. Math. 1 (1951), 81-115.
- [15] T. K. Donaldson and N. S. Trudinger, Orlicz Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75.
- [16] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1957.
- [17] D. G. de Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours, Springer, Berlin, 1989.
- [18] A. Fryszkowski, Fixed Point Theory for Decomposable Sets, Kluwer, Dordrecht, 2004.
- [19] L. Gasiński and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman & Hall/CRC, London, 2004.
- [20] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983.
- [21] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis: Applications, Vol. II, Kluwer, Dordrecht, 2000.
- [22] A. Kozek, Convex integral functionals, Comment. Math. Prace Mat. 21 (1980), 109¬138.
- [23] V. L. Levin, Convex Analysis in Spaces of Measurable Functions and its Applications in Mathematics and Economics, Nauka, Moscow, 1985 (in Russian).
- [24] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. Vol. I: Basic Theory, Vol. II: Applications, Springer, Berlin, 2005.
- [25] D. Motreanu and V. Rădulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems, Kluwer, Dordrecht, 2003.
- [26] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
- [27] H. T. Nguyêñ, On Banach function M-spaces, Indag. Math. (N.S.) 14 (2002), 551¬564.
- [28] —, On the sequential strong-weak closedness of the Nemytskij multivalued operator, Demonstratio Math. 35 (2002), 365-374.
- [29] —, Semicontinuity and continuous selections for the multivalued superposition operator without assuming growth-type conditions, Studia Math. 163 (2004), 1-19.
- [30] H. T. Nguyêñ, M. Juniewicz and J. Ziemińska, CM-selectors for pairs of oppositely semicontinuous multifunctions and some applications to strongly nonlinear inclusions, Z. Anal. Anwendungen 19 (2000), 1-12.
- [31] M. Nowak, Conditional and relative weak compactness in vector-valued function spaces, J. Convex Anal. 12 (2005), 447-463.
- [32] R. Płuciennik, S. Tian and Y. Wang, Non-convex integral functionals on Musielak- Orlicz spaces, Comment. Math. Prace Mat. 30 (1990), 113-123.
- [33] R. Precup, Fixed point theorems for decomposable multi-valued maps and applications, Z. Anal. Anwendungen 22 (2003), 843-861.
- [34] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York, 1991.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0009-0036