Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 53, no 4 | 349-359
Tytuł artykułu

Tychonoff products of two-element sets and some weakenings of the Boolean prime ideal theorem

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X be an infinite set, and P(X) the Boolean algebra of subsets of X. We consider the following statements: BPI(X): Every proper filter of P(X) can be extended to an ultrafilter. UF(X): P(X) has a free ultrafilter. We will show in ZF (i.e., Zermelo–Fraenkel set theory without the Axiom of Choice) that the following four statements are equivalent: (i) BPI(ω). (ii) The Tychonoff product 2R, where 2 is the discrete space {0, 1}, is compact. (iii) The Tychonoff product [0, 1] R is compact. (iv) In a Boolean algebra of size ≤ |R| every filter can be extended to an ultrafilter. We will also show that in ZF, UF(R) does not imply BPI(R). Hence, BPI(R) is strictly stronger than UF(R). We do not know if UF(ω) implies BPI(ω) in ZF. Furthermore, we will prove that the axiom of choice for sets of subsets of R does not imply BPI(R) and, in addition, the axiom of choice for well orderable sets of non-empty sets does not imply BPI(ω).
Wydawca

Rocznik
Strony
349-359
Opis fizyczny
Bibliogr. 20 poz., tab.
Twórcy
  • Department of Mathematics, University of the Aegean, 83 200 Karlovassi (Samos), Greece, kker@aegean.gr
Bibliografia
  • [1] O. De la Cruz, E. Hall, P. Howard, K. Keremedis, and J. E. Rubin, Products of compact spaces and the axiom of choice, Math. Logic Quart. 48 (2002), 508-516.
  • [2] O. De la Cruz, E. Hall, P. Howard, J. E. Rubin, and A. Stanley, Definitions of compactness and the axiom of choice, J. Symbolic Logic 67 (2002), 143-161.
  • [3] S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math. 56 (1965), 325-345.
  • [4] U. Feigner, Models of ZF Set Theory, Lecture Notes in Math. 223, Springer, 1971.
  • [5] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, Princeton, 1963.
  • [6] H. Herrlich, Compactness and the Axiom of Choice, Appl. Categ. Structures 4 (1996), 1-14.
  • [7] P. Howard, Definitions of compact, J. Symbolic Logic 55 (1990), 645-655.
  • [8] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998.
  • [9] T. Jech, The Axiom of Choice, North-Holland, Amsterdam, 1973.
  • [10] K. Keremedis, The compactness of 2R and some weak forms of the axiom of choice, Math. Logic Quart. 46 (2000), 569-571.
  • [11] K. Keremedis and E. Tachtsis, Some weak forms of the axiom of choice restricted to the real line R, ibid. 47 (2001), 413-422.
  • [12] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1983.
  • [13] A. Lévy, The Fraenkel Mostowski method for independence proofs in set theory, in: J. W. Addison, G. Henkin and A. Tarski (eds.), The Theory of Models, North- Holland, 1965, 221-228.
  • [14] J. Łoś and C. Ryll-Nardzewski, Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41 (1954), 49-56.
  • [15] J. Mycielski, Two remarks on Tychonoff’s product theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 439-441.
  • [16] Y. Rav, Variants of Rado’s selection lemma and their applications, Math. Nachr. 79 (1977), 145-165.
  • [17] H. Rubin and J. E. Rubin, Equivalents of the Axiom of Choice, II, North-Holland, Amsterdam, 1985.
  • [18] H. Rubin and D. Scott, Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389.
  • [19] J. K. Truss, Cancellation laws for surjective cardinals, Ann. Pure Appl. Logic 27 (1984), 165-207.
  • [20] S. Willard, General Topology, Addison-Wesley, 1968.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0009-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.