Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 45, no 2 | 173-177
Tytuł artykułu

Quantum information transfer without classical channel : a proposed energy-correlation experiment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy entangled photon pairs from parametric down conversion are the considered bipartite quantum system. It is argued that photocount of the energy-analysed photon in one subsystem does not commute with measurements of higher order correlation functions (interferences) in the second subsystem. Both the subsystems are mutually spatially disjoint. Very short measurement sampling times needed to perform the discussed experiment make it rather "gedanken" than real.
Wydawca

Rocznik
Strony
173-177
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warszawa, aszczep@ippt.gov.pl
Bibliografia
  • 1. V. SCARANI, W. TITTEL, H. ZsiNDEN, N. GISIN, The speed of quantum information in the preferred frame: analysis of experimental data, Phys. Lett. A, 276, 1, 1-7, 2000.
  • 2. A. PERES, Classical interventions in quantum systems. II. Relativistic invariance, Phys. Rev. A, 61, 022117-(l-8), 2000.
  • 3. J. VON NEUMANN, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin 1932.
  • 4. E. SCHRODINGER, Discussion of probability relations between separated systems, Proc. Cambridge Phil. Soc., 31, 553, 1935.
  • 5. S.L. BRAUNSTEIN, Quantum teleportation without irreversible detection, Phys. Rev. A, 53, 1900-1902, 1995.
  • 6. A. FURUSAWA et ai, Unconditional quantum teleportation, Science, 282, 706-709, 1998.
  • 7. S. BOSE et al., Proposal for telepotation of an atomic state via cavity decay, Phys. Rev. Lett., 83, 5158-5161, 1999.
  • 8. A. SZCZEPAŃSKI et al., Quantum information transfer between split parts of a light beam, J. Tech. Phys., 44, 397-402, 2003.
  • 9. C.H. BENNETT, S.J. WIBSNER, Communication via one- and two-operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett., 69, 2881-2884, 1992.
  • 10. C.H. BENNETT, D.P. DIVINCENZO, Quantum information and computation, Nature, 404, 247-255, 2000.
  • 11. R. SRINKANTH, On a generalized peaceful coexistence of special relativity and quantum mechanics, Phys. Lett. A, 292, 161-165, 2001.
  • 12. J.R. FRIEDMAN et al., Quantum superposition of distinct macroscopic states, Nature, 406, 43-45, 2000.
  • 13. C.H. VAN DER WAL et al., Quantum superposition of macroscopic persistent-current states, Science, 290, 773-777, 2000.
  • 14. B. JULSGAARD, A. KOZHEKIN, E.S. POLZIK, Experimentallong-lived entanglement of two macroscopic objects, Nature, 413, 400-404, 2001.
  • 15. L. HACKERMULLER et al., Wave nature of biomolecules and fluorofullerenes, Phys. Rev. Lett., 91, 090408-(l-4), 2003.
  • 16. P.G. KWIAT, R.Y. CHIAO, Observation of a nonclassical Berry's phase for the photon, Phys. Rev. Lett., 66, 588-591, 1991.
  • 17. A. SZCZEPAŃSKI, Non-classical properties of quantum information transfer: proposed experiments, J. Tech. Phys., 44, 379-384, 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0004-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.