Czasopismo
2004
|
Vol. 52, nr 2
|
179-183
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let X be an infinite-dimensional Banach space. The measure of solvability v(I) of the identity operator I is equal to 1.
Rocznik
Tom
Strony
179-183
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Dipartimento di Matematica e Applicazioni, Università di Palermo, Via Archirafi 34, I-90123 Palermo, Italy, d.caponetti@math.unipa.it
autor
- Dipartimento di Matematica, Università della Calabria, I-87036 Arcavacata di Rende (CS), Italy, trombetta@unical.it
Bibliografia
- [1] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhäuser, Basel, 1992.
- [2] Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.
- [3] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, New York, 1985.
- [4] W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal. 2 (1997), 163-183.
- [5] M. Furi and M. Martelli, On α-Lipschitz retractions of the unit closed ball onto its boundary, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 57 (1974), 61-65.
- [6] K. Goebel, On the minimal displacement of points under Lipschitzian mappings, Pacific J. Math. 45 (1973), 135-140.
- [7] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
- [8] P. K. Lin and Y. Sternfeld, Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985), 633-639.
- [9] B. Nowak, On the Lipschitzian retraction of the unit ball in infinite-dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. 27 (1979), 861-864.
- [10] M. Väth, Volterra and Integral Equations of Vector Functions, Monogr. Textbooks Pure Applied Math. 224, Dekker, New York.
- [11] -, Fixed point free maps of a closed ball with small measures of noncompactness, Collect. Math. 52 (2001), 101-116.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0004-0019