Czasopismo
2004
|
Vol. 52, nr 1
|
101-113
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We study a model of motion of a passive tracer particle in a turbulent flow that is strongly mixing in time variable. In [8] we have shown that there exists a probability measure equivalent to the underlying physical probability under which the quasi-Lagrangian velocity process, i.e. the velocity of the flow observed from the vintage point of the moving particle, is stationary and ergodic. As a consequence, we proved the existence of the mean of the quasi-Lagrangian velocity, the so-called Stokes drift of the flow. The main step in the proof was an application of the Lasota-York theorem on the existence of an invariant density for Markov operators that satisfy a lower bound condition. However, we also needed some technical condition on the statistics of the velocity field that allowed us to use the factoring property of nitrations of [sigma]-algebras proven by Skorokhod. The main purpose of the present note is to remove that assumption (see Theorem 2.1). In addition, we prove the existence of an invariant density for the semigroup of transition probabilities associated with the abstract environment process corresponding to the passive tracer dynamics (Theorem 2.7). In Remark 2.8 we compare the situation considered here with the case of steady (time independent) flow where the invariant measure need not be absolutely continuous (see [9]).
Rocznik
Tom
Strony
101-113
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, P.O. Box 21, Śniadeckich 8, 00-956 Warszawa, Poland, komorow@golem.umcs.lublin.pl
- Institute of Mathematics, M. Curie-Skłodowska University, Pl. M. Curie Skłodowskiej 1, 20-031 Lublin, Poland
autor
- Faculty of Mathematics and Natural Sciences, The Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland, gkrupa@kul.lublin.pl
Bibliografia
- [1] D. G. Aronson, Bounds for the fundamental solutions of a parabolic equation, Bull. Amer. Math. Soc. 290 (1967), 890-896.
- [2] A. V. Balakrishnan, Applied Functional Analysis, Springer, Berlin, 1981.
- [3] E. Bolthausen and A. S. Sznitman, On the static and dynamic points of views for certain random walks in random environment, Methods Appl. Anal. 9 (2002), 345-376.
- [4] G. Falkovich, K. Gawędzki and M. Vergassola, Particles and uids in turbulence, Rev. Mod. Phys. 73 (2001), 913-975.
- [5] A. Fannjiang and T. Komorowski, An invariance principle for diffusions in turbulence, Ann. of Probab. 27 (1999), 751-781.
- [6] S. Foguel, Ergodic Theory of Markov Processes, Van Nostrand, New York, 1969.
- [7] U. Frisch, Turbulence, Cambridge Univ. Press, 1996.
- [8] T. Komorowski and G. Krupa, On the existence of invariant measure for Lagrangian velocity in compressible environments, J. Statist. Phys. 106 (2002), 635-651; Erratum, ibid. 109 (2002), 341.
- [9] -, -, On stationarity of Lagrangian observations of passive tracer velocity in a compressible environment, Ann. Appl. Probab., to appear.
- [10] A. Lasota and M. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, 1985.
- [11] J. L. Lumley, The mathematical nature of the problem of relating Lagrangian and Eulerian statistical functions in turbulence, in: Mécanique de la Turbulence (Marseille, 1961), Ed. du CNRS, Paris, 1962, 17-26.
- [12] A. J. Majda and P. R. Kramer, Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena, Phys. Rep. 314 (1999), 237-574.
- [13] S. Olla, Homogenization of diffusion processes in random fields, manuscript, Centre de Mathématiques Appliquées, 1994, www.cmap.polytechnique.fr/~olla/lho.ps.
- [14] S. C. Port and C. Stone, Random measures and their application to motion in an incompressible uid, J. Appl. Probab. 13 (1976), 499-506.
- [15] Yu. A. Rozanov, Stationary Random Processes, Holden-Day, 1967.
- [16] A. V. Skorokhod, ϭ-algebras of events on probability spaces. Similarity and factorization, Theory Probab. Appl. 36 (1991), 63-73.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0004-0011