Czasopismo
2003
|
Vol. 51, no 4
|
419-438
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
New sufficient conditions for asymptotic stability of Markov semigroups are given. These criteria are applied to transport equations.
Rocznik
Tom
Strony
419-438
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland, mtyran@us.edu.pl
Bibliografia
- [1] K. Baron, A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math., 58 (1993) 161-175.
- [2] W. Bartoszek, T. Brown, On Frobenius-Perron operators which overlaps supports, Bull. Pol. Ac.: Math., 45 (1997) 17-24.
- [3] T. Dłotko, A. Lasota, Statistical stability and the lower bound function technique, in: Semigroups theory and applications, Vol. 1, eds.: H. Bereziz, M. Crandall, Longman Scientific and Technical, London (1987) 75-95.
- [4] S. Horowitz, Semi-groups of Markov operators, Ann. Inst. H. Poincaré, 10 (1974) 155-166.
- [5] J. Klaczak, Stability of a transport equation, Ann. Polon. Math., 49 (1988) 69-80.
- [6] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math., 6, Berlin 1985.
- [7] A. Lasota, Invariant principle for discrete time dynamical systems, Univ. Iagel. Acta. Math., 31 (1994) 111-127.
- [8] A. Lasota, M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer Appl. Math. Sci., 97, New York 1994.
- [9] A. Lasota, J. Traple, Invariant measures related with Poisson driven stochastic differential equations, Stochastic Process. Appl., 106 (2003) 81-93.
- [10] M. Lin, Support overlapping L1 contractions and exact non-singular transformations, Colloq. Math., 84/85 (2000) 515-520.
- [11] S. Łojasiewicz, An introduction to the theory of real functions, John Wiley and Sons, New York 1988.
- [12] J. Malczak, Weak and strong convergence of L1 solutions of a transport equation, Bull. Pol. Ac.: Math., 40 (1992) 59-72.
- [13] J. Malczak, Statistical stability of Poisson driven differential equations, Bull. Pol. Ac.: Math., 41 (1993) 159-176.
- [14] K. Pichór, Asymptotic stability of a partial differential equation with an integral perturbation, Ann. Polon. Math., 68 (1998) 83-96.
- [15] K. Pichór, R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997) 56-74.
- [16] K. Pichór, R. Rudnicki, Asymptotic behaviour of Markov semigroups and applications to transport equations, Bull. Pol. Ac.: Math., 45 (1997) 379-397.
- [17] K. Pichór, R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000) 668-685.
- [18] R. Rudnicki, Asymptotic behaviour of a transport equation, Ann. Polon. Math., 57 (1992) 45-55.
- [19] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Pol. Ac.: Math., 43 (1995) 245-262.
- [20] R. Rudnicki, Asymptotic stability of Markov operators: a counter-example, Bull. Pol. Ac.: Math., 45 (1997) 1-5.
- [21] R. Rudnicki, K. Pichór, M. Tyran-Kamińska, Markov semigroups and their applications, in: Dynamics of Dissipation, eds.: P. Garbaczewski, R. Olkiewicz, Lectures Notes in Phys., 597, Springer-Verlag, Berlin (2002) 215-238.
- [22] J. Socała, On the existence of invariant densities for Markov operators, Ann. Polon. Math., 48 (1988) 51-56.
- [23] J. Traple, Markov semigroups generated by Poisson driven differential equations, Bull. Pol. Ac.: Math., 44 (1996) 161-182.
- [24] R. Zaharopol, Strongly asymptotically stable Frobenius-Perron operators, Proc. Am. Math. Soc., 128 (2000) 3547-3552.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0001-0080