Warianty tytułu
Języki publikacji
Abstrakty
We report results of rheological experiments on suspensions of nanopowders. In this work we have used two ceramic nanopowders such as magnesium-aluminum spinel (S30CR Baikowski – MgAl2O4) and yttrium oxide (Y2O3) suspended in ethyl alcohol. Rheological studies have been carried out using several experimental systems including Haake Mars 2 rheometer (Thermo Electron Corporation, Karlsruhe, Germany) and Rheo-NMR (Bruker BioSpin, Rheinstetten, Germany). Measurements of dynamic viscosity in the range of shear rates from 0,01 s-1 to 2000 s-1 and the temperature range from -15°C to 20°C has been conducted. Most of the samples exhibited a non-Newtonian nature.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
131-142
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
autor
autor
autor
- Department of Physics Rzeszów University of Technology Rzeszów, Poland, gzyla@prz.edu.pl
Bibliografia
- 1. S. Zussman, New nanofluids increase heat transfer capability, Argonne National Laboratory, USA, 4, 1997.
- 2. H. Chen, Y. Ding, Heat transfer and rheological behaviour of nanofluids – a review, Advances in Transport Phenomena (Springer Annual Review Series), Springer Press, 135–177, 2009.
- 3. J. Fan, L. Wang, Review of heat conduction in nanofluids, Journal of Heat Transfer, 133, 4, 040801, 2011.
- 4. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, International Journal of Heat and Mass Transfer, 50, 11–12, 2272–2281, 2007.
- 5. X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46, 1, 1–19, 2007.
- 6. V. Trisaksri, S. Wongwises, Critical review of heat transfer characteristics of nanofluids, Renewable and Sustainable Energy Reviews, 11, 3, 512–523, 2007.
- 7. M. Pastoriza-Gallego, L. Lugo, J. Legido, M. Pineiro, Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids, Nanoscale Research Letters, 6, 1, 221, 2011.
- 8. M.E. Mackay, T.T. Dao, A. Tuteja, D.L. Ho, B. Van Horn, H.-C. Kim, C.J. Hawker, Nanoscale effects leading to non-einstein-like decrease in viscosity, Nature Materials, 2, 11, 762–766, 2003.
- 9. D.R. Heine, M.K. Petersen, G.S. Grest, Effect of particle shape and charge on bulk rheology of nanoparticle suspensions, Journal of Chemical Physics, 132, 18, 184509, 2010.
- 10. W.J. Tseng, K.-C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Materials Science and Engineering, A, 355, 1-2, 186–192, 2003.
- 11. M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido, M.M. Pineiro, Cuo in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilibria, 300, 1-2, 188–196, 2011.
- 12. M. Pastoriza-Gallego, L. Lugo, J. Legido, M. Pineiro, Rheological non-newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids, Nanoscale Research Letters, 6, 1, 560, 2011.
- 13. K. Tsukuma, Transparent MgAl2O4 spinel ceramics produced by hip post-sintering, Nippon Seramikkusu Kyokai gakujutsu ronbunshi (Journal of the Ceramic Society of Japan), 114, 1334, 802–806, October 2006.
- 14. N. Saito, S. Matsuda, T. Ikegami, Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder, Journal of the American Ceramic Society, 81, 8, 2023–2028, 1998.
- 15. E. Zych, C. Brecher, A.J. Wojtowicz, H. Lingertat, Luminescence properties of ce-activated yag optical ceramic scintillator materials, Journal of Luminescence, 75, 3, 193–203, 1997.
- 16. J.A. Savage, Preparation and properties of hard crystalline materials for optical applications – a review, Journal of Crystal Growth, 113, 698–715, 1991.
- 17. E. Tamjid, B.H. Guenther, Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol, Powder Technology, 197, 1-2, 49–53, 2010.
- 18. T. Parametthanuwat, S. Rittidech, A. Pattiya, Y. Ding, S. Witharana, Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer, Nanoscale Research Letters, 6, 1, 315, 2011.
- 19. H.-J. Chen, D.Wen, Ultrasonic-aided fabrication of gold nanofluids, Nanoscale Research Letters, 6, 1, 198, 2011.
- 20. R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15, 3, 1646–1668, 2011.
- 21. D.P. Kulkarni, D.K. Das, R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Applied Energy, 86, 12, 2566–2573, 2009.
- 22. P. Oswald, Rheophysics. The Deformation and Flow of Matter, Cambridge University Press, Cambridge, 2009.
- 23. P.T. Callaghan, Rheo-nmr and velocity imaging, Current Opinion in Colloid & Interface Science, 11, 1, 13–18, 2006.
- 24. P.T. Callaghan, Rheo-nmr: nuclear magnetic resonance and the rheology of complex fluids, Reports on Progress in Physics, 62, 4, 599, 1999.
- 25. Y. Rao, Nanofluids: Stability, phase diagram, rheology and applications, Particuology, 8, 6, 549–555, 2010.
- 26. G. Żyła, M. Cholewa, A. Witek, Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature, Nanoscale Research Letters, 7, 1, 412, 2012.
- 27. Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, A review on development of nanofluid preparation and characterization, Powder Technology, 196, 2, 89–101, 2009.
- 28. F. Duan, T. Wong, A. Crivoi, Dynamic viscosity measurement in non-newtonian graphite nanofluids, Nanoscale Research Letters, 7, 1, 360, 2012.
- 29. A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions, International Journal of Heat and Mass Transfer, 54 17-18, 4051–4068, 2011.
- 30. G. Żyła, M. Cholewa, A. Witek, J.P. Plog, V. Lehmann, T. Oerther, D. Gross, Viscosity of suspensions of yttrium oxide (Y2O3) nanopowder in ethyl alcohol, Journal of Nanoscience and Nanotechnology, 12, 8920–8928, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0014-0055