Czasopismo
2012
|
Vol. 64, nr 6
|
541-554
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
An iterative micromechanical method is presented in order to predict the elastic constants of composites and nanocomposites including arbitrarily oriented reinforcement particles. The proposed method is capable of introducing into the matrix any kind of heterogeneity based on its dimension, orientation, mechanical properties and volume fraction. The efficiency and convergence of solution method is studied by computing the elasticity tensor of a unidirectional particulate composite. It is then applied to model the elastic behavior of nylon-6/clay nanocomposite with taking into consideration the probability distribution of aspect ratio and orientation of effective particles. The results are validated by comparison with available experimental data.
Czasopismo
Rocznik
Tom
Strony
541-554
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
autor
- Department of Mechanical Engineering, Semnan University Semnan, 35131-19111, Iran, a_mohyeddin@sun.semnan.ac.ir
Bibliografia
- 1. Q.H. Zenga, A.B. Yua, G.Q. Lu, Multiscale modeling and simulation of polimer nanocomposites, Prog. Polym. Sci., 33, 191–269, 2008.
- 2. J. Ghanbari, R. Naghdabadi, Hierarchical Multiscale Modeling of Nanotube-Reinforced Polymer Composites , Int. J. Multiscale Comput. Eng., 7, 395–408, 2009.
- 3. M. Wang, N. Pan, Elastic property of multiphase composites with random microstructures, J. Comput. Phys., 228, 5978–5988, 2009.
- 4. J. Ptaszny, P. Fedeliński, Numerical homogenization of polymer/clay nanocomposites by the boundary element method, Arch. Mech., 63, 517–532, 2011.
- 5. Yu.I. Dimitrienko, A.P. Sokolov, Numerical modeling of composites with multiscalemicrostructure, Bulletin of the Russian Academy of Sciences: Physics, 75, 1457–1461, 2011.
- 6. R.D. Peng, H.W. Zhoua, H.W. Wangb, L. Mishnaevsky, Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus, Comput. Mat. Sci., 60, 19–31, 2012.
- 7. Q. Li, X.X. Yang, Numerical Simulation for Mechanical Behavior of Carbon Black Filler Particle Reinforced Rubber Matrix Composites, Appl. Mech. Mat., 137, 1–6, 2012.
- 8. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceeding of the Royal Society London A, 241, 376–396, 1957.
- 9. R.M. Christensen, Mechanics of Composite Materials, Dover Publications, 2005.
- 10. J. Aboudi, Mechanics of Composite Materials: A Unified Micromechanical Approach, Elsevier Science Publishers Editor, B.V., Amsterdam 1991.
- 11. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571–574, 1973.
- 12. E. Herve, A. Zaoui, N-layered inclusion-based micromechanical modeling, Int. J. Eng. Sci., 31, 1–10, 1993.
- 13. M. Bornert, C. Stolz, A. Zaoui, Morphologically representative pattern-based bounding in elasticity, J. Mech. Phys. Solids, 44, 307–331, 1996.
- 14. A.N. Norris, A differential schema for the effective moduli of composites, Mech. Mater., 4, 1–16, 1985.
- 15. R.W. Zimmerman, Elastic moduli of a solid containing spherical inclusions, Mech. Mater., 12, 17–24, 1991.
- 16. B. Budiansky, On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solids, 13, 223–227, 1965.
- 17. N. Phan-Thien, D.C. Pham, Differential multiphase models for polydispersed suspensions and particulate solids, J. Non-Newtonian Fluid Mech., 72, 305–318, 1997.
- 18. L. Bardella, F. Genna, On the elastic behavior of syntactic foams, Int. J. Solids Struct., 38, 7235–7260, 2000.
- 19. Y. Kojima, Y. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res., 8, 1185–1189, 1993.
- 20. J.S. Shelley, P.T. Mather, K.L. Devries, Reinforcement and environmental degradation of nylon-6/clay nanocomposites, Polymer, 42, 5849–5858, 2001.
- 21. D.A. Brune, J. Bicerano, Micromechanics of nanocomposites: comparison of ten sile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus, Polymer, 43, 369–387, 2002.
- 22. J.C. Halpin, J.L. Kardos, The Halpin-Tsai Equations: A Review, Polym. Eng. Sci., 16, 344–352, 1976.
- 23. J.-J. Luo, I.M. Daniel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol., 63, 1607–1616, 2003.
- 24. K. Anoukou, F. Zaïri, M. Naït-Abdelaziz, A. Zaoui, T. Messager, J.M. Gloaguen, On the overall elastic moduli of polymer-clay nanocomposite materials using a self-consistent approach. Part I: Theory, Compos. Sci. Technol., 71, 197–205, 2011.
- 25. A. Mesbah, F. Zaïri, S. Boutaleb, J. M. Gloaguen, M. Naït-Abdelaziz, S. Xie, T. Boukharouba, J. M. Lefebvre, Experimental Characterization and Modeling Stiffness of Polymer/Clay Nanocomposites within a Hierarchical, Multiscale Framework, J. Appl. Polym. Sci., 114, 3274–3291, 2009.
- 26. F. Zaïri, J.M. Gloaguen, M. Naït-Abdelaziz, A. Mesbah, J.M. Lefebvre, Study of the effect of size and clay structural parameters on the yield and post-yield response of polymer/clay nanocomposites via a multiscale micromechanical modeling, Acta Mater., 59, 3851–3863, 2011.
- 27. G.I. Anthoulis, E. Kontou, Micromechanical behaviour of particulate polimer nanocomposites, Polymer, 49, 1934–1942, 2008.
- 28. B. Budiansky, T.Y. Wu, Theoretical prediction of plastic strains of polycrystals, [in:] Proceedings of the 4th US National Congress of Applied Mechanics, 1175–1185, 1962.
- 29. J. Wang, R. Pyrz, Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas, Compos. Sci. Technol., 64, 925–934, 2004.
- 30. R. Zouari, A. Benhamida, H. Dumontet, A micromechanical iterative approach for the behavior of polydispersed composites, Int. J. Solids Struct., 45, 3139–3152, 2008.
- 31. R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 213–222, 1965.
- 32. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11, 127–140, 1963.
- 33. J. Qu, M. Cherkaoui, Fundamentals of micromechanics of solids, Wiley, Hoboken, New Jersey, 2006.
- 34. N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes, R.E. Cohen, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45, 487–506, 2004.
- 35. A. Zare-Shahabadi, A. Shokuhfar, S. Ebrahimi-Nejad, M. Arjmand, M. Termeh, Modeling the stiffness of polymer/layered silicate nanocomposites: More accurate predictions with consideration of exfoliation ratio as a function of filler content, Polym. Test., 30, 408-414, 2011.
- 36. J.-I.Weon, H.-J. Sue, Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite, Polymer, 46, 6325–6334, 2005.
- 37. T.S. Creasy, Y.S. Kang, Fiber orientation during equal channel angular extrusion of short fiber reinforced thermoplastics, J. Thermoplast. Compos. Mater., 17, 205–227, 2004.
- 38. Z.Y. Xia, Processing-structure-property relationships in oriented polymers, Ph.D. Dissertation, Texas A&M University, Department of Mechanical Engineering, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0013-0045