Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 64, nr 2 | 153-153
Tytuł artykułu

Complex multidisciplinary optimization of turbine blading systems

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the methods and results of direct optimization of turbine blading systems using a software package Opti_turb. The final shape of the blading is obtained from minimizing the objective function, which is the total energy loss of the stage, including the leaving energy. The current values of the objective function are found from 3D RANS computations (from a code FlowER) of geometries changed during the process of optimization. There are constraints imposed on the mass flow rate, exit swirl angle and reactions, as well as on changes of stresses in the metal. Among the optimized parameters are those of the blade itself (such as the blade number and stagger angle as well as the stacking blade line parameters) and those of the blade section (profile). Two new hybrid stochastic-deterministic methods are used for the optimization of flow systems. The first method is a combination of a genetic algorithm and a simplex method of Nelder–Mead. The other method is a combination of a direct search method of Hooke–Jeeves and simulated annealing. Also two methods of parametrization of the blade profile are described. They make use of a set of circle arcs and Bezier functions. In the course of optimization, the flow efficiency of a group of two low pressure (LP) exit stages of a 50 MW turbine operating over a wide range of load is increased by means of optimization of 3D blade stacking lines. Another practical example of efficiency optimization of turbine blading systems is modification of low load profiles PLK-R2 for high pressure (HP) steam turbine stages. It is shown that optimization of geometry of turbine blading systems can give considerable efficiency gains. Optimization of 3D blade stacking lines in LP turbine stages can give over a 2% efficiency rise. Up to 1% efficiency, increase can be obtained from optimization of HP blade profiles and their restaggering.
Słowa kluczowe
Wydawca

Rocznik
Strony
153-153
Opis fizyczny
–-175, Bibliogr. 33 poz.
Twórcy
autor
autor
Bibliografia
  • 1. J.D. Denton Loss mechanisms in turbomachines, ASME J. Turbomachinery, 115, 621–656, 1993.
  • 2. S. Harrison The influence of blade lean on turbine losses, ASME J. Turbomachinery, 114, 184–190, 1992.
  • 3. J.D. Denton, L. Xu, The exploitation of 3D flow in turbomachinery design, VKI LS, 1999-02, 1999.
  • 4. P. Lampart, A. Gardzilewicz, Numerical study of 3D blading in HP impulse turbines, Cieplne Maszyny Przepływowe (Turbomachinery), 115, 297–310, 1999.
  • 5. A. Weiss, Challenges in designing large low pressure steam turbines’ final stages, Proc. Conf. Modelling and Design in Fluid Flow Machinery, November 18–21, Gdańsk, Poland, pp. 183–191, 1977.
  • 6. P. Lampart, S. Yershov, Direct constrained CFD-based optimization of 3D blading for the exit stage of a large power steam turbine, Trans. AMSE – J. Eng. Gas Turbines & Power, 125, 1, 385–390, 2003.
  • 7. P. Lampart, S. Yershov, A. Rusanov, Increasing flow efficiency of high-pressure and low-pressure steam turbine stages from numerical optimization of 3D blading, Engineering Optimization, 37, 2, 145–166, 2005.
  • 8. A. Demeulenaere, R. Van Den Braembussche, Three-dimensional inverse metod for turbomachinery blading design, ASME J. Turbomachinery, 120, 247–254, 1998.
  • 9. G.S. Dulikravich, D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, AIAA Paper 99-0185, 1999.
  • 10. S. Pierret, R. Van Den Braembussche, Turbo-machinery blade design using a Navier–Stokes solver and artificial neural network, ASME Paper 98-GT-4, 1, 1998.
  • 11. K. Kosowski, K. Tucki, A. Kosowski, Turbine stage design aided by artificial intelligence methods, Expert Syst. Appl., 36, 9, 11536–11542, 2009.
  • 12. V. Iliopoulou, I. Lepot, P. Geuzaine, Design optimization of a HP compressor rotor blade and its hub endwall, AMSE Pap. GT2008-50293, 2008.
  • 13. A.I.J. Forrester, A. Sobester, A.J. Keane, Engineering design via surrogate modeling: a practical guide, Wiley, Chichester 2008.
  • 14. A. Hedar, M. Fukushima, Minimizing multimodal functions by simplex coding genetic algorithm, Optimization Methods and Software, 18, 265–282, 2003.
  • 15. R. Chelouah, P. Siarry, A hybrid method combining continuous tabu search and Nelder–Mead Simplex algorithms for the global optimization of multiminima functions, Europ. J. Operational Research, 161, 636–654, 2005.
  • 16. P. Lampart, K. Augustyniewicz, Hybrid stochastic-deterministic methods for optimization of flow systems, Herald of Aeroengine Building, 3, 22–26, 2007.
  • 17. M.E. Dejcz, G.A. Filippov, L. Ja. Lazarev, Atlas of axial turbine cascade profiles, Maszinostrojenie, Moskwa 1965 [in Russian].
  • 18. G. Farin, Curves and surfaces for computer-aided geometric design, Elsevier, Science & Technology Books, 1997.
  • 19. S. Yershov, A. Rusanov, The application package FlowER for the calculation of 3D viscous flows through multi-stage turbomachinery, Certificate of state registration of copyright, Ukrainian state agency of copyright and related rights, February 19, 1996.
  • 20. S. Yershov, A. Rusanov, A. Gardzilewicz, P. Lampart, J. Świrydczuk, Numerical simulation of 3D flow in axial turbomachines, TASK Quarterly, 2, No. 2, 319–347, 1998.
  • 21. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 8, 1598–1605, 1994.
  • 22. J. Kaczorowski, Strength analysis of marine propeller blade (theory and construction), Rep. CTO No. RK-87/R-125, 1987 [in Polish].
  • 23. T. Tuszkowska-Koronowicz, Adaptation of code WYKA for structure calculation for NBW, Rep. IMP PAN 143/09, 2009 [in Polish].
  • 24. P. Lampart, Ł. Hirt, A. Nastałek, K. Augustyniewicz, T. Tuszkowska-Koronowicz, Increasing efficiency of turbine blading systems in supercritical power units with application of optimization methods, Rep. IMPPAN No. 205/2009, presented at Conference: Supercritical Power Units, Szczyrk–Orle Gniazdo, April 22–23, 2009 [in Polish].
  • 25. ANSYS, ANSYS Fluent 12.0, 2010.
  • 26. P. Lampart, Investigation of endwall flows and losses in axial turbines, Part I. Formation of endwall flows and losses, J. Theoret. Appl. Mech., 47, 2, 321–342, 2009.
  • 27. B.E. Launder, G.J. Reece, W. Rodi, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mechanics, 68, Part 3, 537–566, 1975.
  • 28. R. Langtry, F. Menter, Transition Modeling for General CFD Applications in Aeronautics, AIAA Paper 2005-522, 2005.
  • 29. R. Hooke, T.A. Jeeves, Direct search solution of numerical and statistical problems, J. Assoc. Computing Machinery, 8, No. 2, 212–229, 1961.
  • 30. J.A. Nelder, R. Mead, A simplex method for function minimization, Computer Journal, 7, No. 1, 308–313, 1965.
  • 31. D.E. Goldberg, 1995, Genetic algorithms and their applications, WNT Warsaw 1995 [In Polish].
  • 32. S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science, 4598, 1983.
  • 33. P.M. Pardalos, H.E. Romelin, Handbook of global optimization, Vol.2, Nonconvex optimization and its application, Kluwer Academic Publishers, Boston/Doordrecht/London 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.