Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 63, nr 1 | 25-25
Tytuł artykułu

Acoustic scattering from functionally graded cylindrical shells

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the method of wave function expansion is adopted to study the scattering of a plane harmonic acoustic wave incident upon an arbitrarily thick-walled, functionally graded cylindrical shell submerged in and filled with compressible ideal fluids. A laminate approximate model and the so-called state space formulation in conjunction with the classical transfer matrix (T-matrix) approach, are employed to present an analytical solution based on the three-dimensional exact equations of elasticity. Three models, representing the elastic properties of FGM interlayer are considered. In all models, the mechanical properties of the graded shell are assumed to vary smoothly and continuously with the change of volume concentrations of the constituting materials across the thickness of the shell. In the first two models, the rule of mixture governs. The main difference between them is the set of elastic constants (e.g., Lamé’s constants in model I and Young’s modulus and Poisson’s ratio in Model II) which are governed by the rule of mixtures. In the third model, an elegant self-consistent micromechanical model which assumes an interconnected skeletal microstructure in the graded region is employed. Particular attention is paid to backscattered acoustic response of these models in a wide range of frequency and for different shell wall-thicknesses. The results reveal a technical comparison between these models. In addition, by examining various cases (i.e., different shell wall-thicknesses, various profiles of variations and different volume concentration of constituents), the impact of the overall volume concentration of constituents and also the profile of variations, on the resonant response of the graded shell is investigated. Limiting cases are considered and good agreement with the solutions available in the literature is obtained.
Wydawca

Rocznik
Strony
25-25
Opis fizyczny
-–56, Bibliogr. 38 poz.
Twórcy
autor
autor
autor
autor
  • Department of Mechanical Engineering, University of Tehran Amirabad, Teheran, Iran, jjamaly@ut.ac.ir
Bibliografia
  • 1. M. Yamanouchi, M. Koizumi, T. Hirai, I. Shiota, Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan, 1990.
  • 2. J.B. Holt, M. Koizumi, T. Hirai, Z.A. Munir, Ceramic Transaction: Functionally Gradient Materials, Vol. 34, The American Ceramic Society, Ohio, Westerville, 1993.
  • 3. M. Koizumi, The concept of FGM, [in:] Ceramic Transaction: Functionally Gradient Materials, J.B. Holt, M. Koizumi, T. Hirai, Z.A. Munir [Eds.], Vol. 34, The American Ceramic Society, Ohio, Westerville, 3–10, 1993.
  • 4. S. Suresh, A. Mortensen, Fundamentals of Functionally Graded Materials, IOM Communications, London 1998.
  • 5. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Chapman Hall, 1999.
  • 6. M. Talmant, H. Batard,Material characterization and resonant scattering by cylinders, Proceedings of the IEEE Ultrasonics Symposium, 3, 1371–1380, 1994.
  • 7. A. Migliori, J.L. Sarrao, Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements and Nondestructive Evaluation, Wiley, New York 1997.
  • 8. A. Tesei, W.L.J. Fox, A. Maguer, A. Lovik, Target parameter estimation using resonance scattering analysis applied to air-filled, cylindrical shells in water, J. Acoust. Soc. Am., 108, 2891–2910, 2000.
  • 9. D. Guicking, K. Goerk, H. Peine, Recent advances in sonar target classification, Proceedings of SPIE – International Society for Optical Engineering, 1700, 2–15, 1992.
  • 10. F. Honarvar, A.N. Sinclair, Nondestructive evaluation of cylindrical components by resonance acoustic spectroscopy, Ultrasonics, 36, 845–854, 1998.
  • 11. G.C. Gaunaurd, Elastic and acoustic resonance wave scattering, Applied Mechanical Review, 42, 143–192, 1989.
  • 12. H. Überall, Acoustic Resonance Scattering, Gordon and Breach Science, Philadelphia 1992.
  • 13. N.D. Veksler, Resonance Acoustic Spectroscopy, Springer Series on Wave Phenomena, Springer-Verlag, Berlin 1993.
  • 14. G. Kaduchak, C.M. Loeffler, Sound scattering by a fluid-filled cylindrical shell In water, J. Acoust. Soc. Am., 97, 3423–3424, 1995.
  • 15. N.D. Veksler, J.L. Izbicki, Modal resonances of peripheral waves, Acta Acustica, 82, 401–410, 1996.
  • 16. F. Honarvar, A.N. Sinclair, Acoustic wave scattering from transversely isotropic cylinders, J. Acoust. Soc. Am., 100, 57–63, 1996.
  • 17. Y.S. Joo, J.G. Ih, M.S. Choi, Inherent background coefficients for acoustic resonance scattering from submerged, multilayered, cylindrical structures, J. Acoust. Soc. Am., 103, 900–910, 1998.
  • 18. J.M. Conoir, J.L. Izbicki, O. Lenoir, Phase gradient method applied to scattering by an elastic shell, Ultrasonics, 35, 157–169, 1997.
  • 19. M.S. Choi, Y.S. Joo, J.P. Lee, The inherent background in acoustic wave scattering by a submerged target, J. Acoust. Soc. Am., 99, 2594–2603, 1996.
  • 20. M.S. Choi, Y.S. Joo, Theory of the background amplitudes in acoustic resonance scattering, J. Acoust. Soc. Am., 101, 2083–2087, 1997.
  • 21. Y.S. Joo, J.G. Ih, M.S. Choi, Inherent background coefficients for acoustic resonance scattering from submerged, multilayered, cylindrical structures, J. Acoust. Soc. Am., 103, 900–910, 1998.
  • 22. H. Überall, Acoustics of shells, Acoustical Physics, 47, 115–139, 2003.
  • 23. J.Y. Kim, J.G. Ih, Scattering of plane acoustic waves by a transversely isotropic cylindrical shell-Application to material characterization, Applied Acoustics, 64, 1187–1204,2003.
  • 24. Y. Fan, F. Honarvar, A.N. Sinclair, M.R. Jafari, Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves, J. Acoust. Soc. Am., 113, 102–113, 2003.
  • 25. S.M. Hasheminejad, M. Rajabi, Acoustic scattering characteristics of thick-walled orthotropic cylindrical shell at oblique incidence, Ultrasonics, 47, 32–48, 2007.
  • 26. S.M. Hasheminejad, M. Rajabi, Acoustic resonance scattering from a submerged functionally graded cylindrical shell, Journal of Sound and Vibration, 302, 208–228, 2007.
  • 27. A.D. Pierce, Acoustics; An Introduction to its Physical Principles and Applications, American Institute of Physics, New York 1991.
  • 28. W.Q. Chen, Z.G. Bian, H.J. Ding, Three-dimensional vibration analysis of fluid filled orthotropic FGM cylindrical shells, International Journal of Mechanical Sciences, 46, 159–171, 2004.
  • 29. W.Q. Chen, Z.G. Bian, C.F. Lv, H.J.Ding, 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid, International Journal of Solids and Structures, 41, 947–964, 2004.
  • 30. J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, New York 1976.
  • 31. M.J.P. Musgrave, Crystal Acoustics, Holden-Day Series in Mathematical Physics, 1970.
  • 32. R. Hill, A self-consistent mechanics of composite materials, Journal of Mechanics and Physics of Solids, 13, 213–222, 1965.
  • 33. T. Reiter, G.J. Dvorak, V. Tvergaard, Micromechanical models for graded composite materials, Journal of Mechanics and Physics of Solids, 45, 1281–1302, 1997.
  • 34. Y.S. Joo, J.G. Ih, M.S. Choi, Inherent background coefficients for acoustic resonance scattering from submerged, multilayered, cylindrical structures, J. Acoust. Soc. Am., 103, 900–910, 1998.
  • 35. M.S. Choi, Inherent background coefficient of the axisymmetric mode in acoustic resonance scattering from a system of multilayered shells, Journal of Korean Physics Society, 37, 519–526, 2000.
  • 36. J.D. Murphy, E.D. Breitenbach, H. Uberall, Resonance scattering of acoustic waves from cylindrical shells, J. Acoust. Soc. Amer., 64, 677–683, 1978.
  • 37. J. David N. Cheeke, Fundamental and Application of Ultrasonic Waves, CRC Series In Pure and Applied Physics, 2002.
  • 38. J.Y. Kim, J.G. Ih, Scattering of plane acoustic waves by a transversely isotropic cylindrical shell. Application to material characterization, Applied Acoustics, 64, 1187–1204, 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.