Warianty tytułu
Języki publikacji
Abstrakty
The magnetic shape memory effect, that is the rearrangement of martensitic microstructure induced by an external magnetic field, is of interest in many fields of application. The effect is based on a preceding martensitic transformation and provides a giant macroscopic strain. This change in length is induced by the complex interplay of magnetic and elastic energies. The effective free energy functional describing this effect is derived and employed in a phase-field model. The coupled equations of motion for the phase fields, the elastic displacement field and the spontaneous magnetization, follow on the energy minimizing principles. Numerical simulations with parameters reflecting the Ni2MnGa material system show the general applicability of the aproach.
Czasopismo
Rocznik
Tom
Strony
549-549
Opis fizyczny
–-571, Bibliogr. 34 poz.
Twórcy
autor
autor
autor
autor
- Institute of Materials and Processes Karlsruhe University of Applied Sciences Moltkestraße 30, 76133 Karlsruhe, Germany
Bibliografia
- 1. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V. V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett., 69, 1966–1968, 1996.
- 2. S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, 6% magnetic-field induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga, Appl. Phys. Lett., 77, 886–888, 2000.
- 3. A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in Ni-Mn-Ga seven-layered martensitic phase, Appl. Phys. Lett., 80, 1746–1748, 2002.
- 4. K. Otsuka, C.M. Wayman [Eds.], Shape Memory Materials, Cambridge University Press, 1998.
- 5. M.L. Richard, J. Feuchtwanger, S.M. Allen, R.C. O’Handley, P. Lázpita, J.M. Barandiaran, Martensite transformation in Ni-Mn-Ga ferromagnetic shapememory alloys, Metall. Mater. Trans. A, 38, 777–780, 2007.
- 6. P. Entel, V.D. Buchelnikov, M.E. Gruner, A. Hucht, V.V. Khovailo, S.K. Nayak, N.A. Zayak, Shape memory alloys: A summary of recent achievements, Mater. Sci. Forum, 583, 21–41, 2008.
- 7. K. Bhattacharya, Comparison of the geometrically nonlinear and linear theories of martensitic transformation, Continuum Mech. Therm., 5, 3, 205–242, 1993.
- 8. A. DeSimone, R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50, 283–320, 2002.
- 9. K. Bhattacharya, Microstructure of Martensite – Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press, 2003.
- 10. V.C. Solomon, M.R. McCartney, D.J. Smith, J. Tang, A.E. Berkowitz, R.C. O’Handley, Magnetic domain configurations in spark-eroded ferromagnetic shape memory Ni-Mn-Ga particles, Appl. Phys. Lett., 86, 192503, 2005.
- 11. J.X. Zhang, L.Q. Chen, Phase-field model for ferromagnetic shape-memory alloys, Phil. Mag. Lett., 85, 531–541, 2005.
- 12. J.X. Zhang, L.Q. Chen, Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials, Acta Mater., 53, 2845–2855, 2005.
- 13. Y.M. Jin, Domain microstructure in magnetic shape memory alloys: Phase-field model and simulation, Acta Mater., 57, 2488–2495, 2009.
- 14. L.J. Li, J.Y. Li, Y.C. Shu, H.Z. Chen, J.H. Yen, Magnetoelastic domains and magnetic field-induced strains in ferromagnetic shape memory alloys by phase-field simulation, Appl. Phys. Lett., 92, 172504, 2008.
- 15. L.J. Li, C.H. Lei, Y.C. Shu, J.Y. Li, Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys, Acta Mater., 59, 2648–2655, 2011.
- 16. B. Nestler, H. Garcke, B. Stinner, Multicomponent alloy solidification: Phase-field modelling and simulations, Phys. Rev. E, 71, 041609, 2005.
- 17. A. Planes, L. Manosa, A. Saxena, Magnetism and Structure in Functional Materials, Springer, 2006.
- 18. H. Garcke, B. Nestler, B. Stoth, On anisotropic order parameter models for multiphase systems and their sharp interface limits, Physica D, 115, 87–108, 1998.
- 19. W.F. Brown Jr., Micromagnetics, Interscience Publisher, 1963.
- 20. R. Phillips, Crystals, Defects and Microstructure: Modeling across Scales, Cambridge University Press, 2000.
- 21. A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford Science Publication, 2000.
- 22. H. Kronmüller, General Micromagnetic Theory, [in:] Handbook of Magnetism and Advanced Magnetic Materials, H. Kronmüller, S. Parkin [Eds.], John Wiley and Sons, 2007.
- 23. D. Lewis, N. Nigam, A geometric integration algorithm with applications to micromagnetism, J. Comput. Appl. Math., 151, 141–170, 2003.
- 24. J.E. Miltat, M.J. Donahue, Numerical Micromagnetics: Finite Difference Methods, [in:] Handbook of Magnetism and Advanced Magnetic Materials, H. Kronmüller, S. Parkin [Eds.], John Wiley and Sons, 2007.
- 25. J.D. Jackson, Classical Electrodynamics, John Wiley and Sons, 1999.
- 26. R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, 2005.
- 27. O. Heczko, Determination of ordinary magnetostriction in Ni-Mn-Ga magnetic shape memory alloys, J. Magn. Magn. Mater., 290–291, 846–849, 2004.
- 28. R. Spatschek, C. Müller-Gugenberger, E. Brener, B. Nestler, Phase-field modeling of fracture and stress induced phase transitions, Phys. Rev. E, 75, 066111, 2007.
- 29. F. Wendler, C. Mennerich, B. Nestler, A phase-field model for polycrystalline thin film growth, J. Cryst. Growth, in press, 2011.
- 30. I. Cimrák, A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism, Arch. Comput. Methods. Eng., 15, 277–309, 2008.
- 31. A.J. Newell, W. Williams, D.J. Dunlop, A generalization of the demagnetizing tensor for nonuniform magnetization, J. Geophys. Res., 98, 9551–9555, 1993.
- 32. A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-Group Methods, Cambridge University Press, 1999.
- 33. R. Tickle, R.D. James, Magnetic and magnetomechanical properties of Ni2MnGa, J. Magn. Magn. Mater, 195, 627–638, 1999.
- 34. P.P. Wu, X.Q. Ma, J.X. Zhang, L.Q. Chen, Phase-field simulations of stress-strain behaviour in ferromagnetic shape memory alloy Ni2MnGa, J. Appl. Phys., 104, 073906, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0009-0057