Czasopismo
2005
|
Vol. 57, nr 6
|
479-491
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we show how to solve the traction problem for the Lamé and Stokes systems by means of a double layer potential. In this way we complete the results of [5], where Cialdea and Hsiao, employing a method introduced by the first author in [1], solve the Dirichlet problem for Lamé and Stokes systems by means of a simple layer potential.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
479-491
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Department of Mathematics, University of Basilicata, V.le dell’Ateneo Lucano, 10 Campus of Macchia Romana, Potenza, Italy , malaspina@unibas.it
- Department of Mathematics, University of Basilicata, V.le dell'Ateneo Lucano, 10 Campus of Macchia Romana, Potenza, Italy, malaspina@unibas.it
Bibliografia
- 1. A. Cialdea, On oblique derivate problem for Laplace equation and connected topics, Rend. Accad. Naz. Sci. XL Mem. Mat., 5, 12, 1, 181–200, 1988.
- 2. A. Cialdea, The simple layer potential for the biharmonic equation in n variables, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2, 2, 115–127, 1991.
- 3. A. Cialdea, The multiple layer potential for the biharmonic equation in n variables, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 3, 4, 241–259, 1992.
- 4. A. Cialdea, A general theory of hypersurface potentials, Ann. Mat. Pura Appl., 4, 168, 37–61, 1995.
- 5. A. Cialdea, G. C. Hsiao, Regularization for some boundary integral equations of the first kind in mechanics, Rend. Accad. Naz. Sci. XL, Mem. Mat. Appl., 5, 19, 25–42, 1995.
- 6. G. Fichera, Una introduzione alla teoria delle equazioni integrali singolari, Rend. Mat. Roma, 19, 17, 82–191, 1958.
- 7. G. Fichera, Spazi lineari di k-misure e di forme differenziali, Proc. of Intern. Symposium on Linear Spaces, Jerusalem 1960, Israel Ac. of Sciences and Humanities, 175–226, Pergamon Press, 1961.
- 8. G. Fichera, Operatori di Riesz-Fredholm, operatori riducibili, equazioni integrali singolari, applicazioni, Ist. Mat. Univ. Roma 1963.
- 9. G. Fichera, Simple layer potential for elliptic equations of higher order, Boundary integral methods, Proc. of IABEM Symposium, L. Morino – R. Piva [Eds.], Springer Verlag, 1–14, Roma 1991.
- 10. W. V. Hodge, A Dirichlet problem for harmonic functionals with applications to analytic varieties, Proc. of the London Math. Soc., 2, 36, 257–303, 1934.
- 11. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Series in Applied Mathematics and Mechanics, 25, North-Holland Publishing Co., 1979.
- 12. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York-London 1969.
- 13. G. Starita, A. Tartaglione, On the traction problem for the Stokes system, Math. Models Methods Appl. Sci., 12, 6, 813–834, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0006-0092